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Abstract— Multi-task robotic bimanual manipulation is be-
coming increasingly popular as it enables sophisticated tasks
that require diverse dual-arm collaboration patterns. Compared
to unimanual manipulation, bimanual tasks pose challenges
to understanding the multi-body spatiotemporal dynamics.
An existing method ManiGaussian [30] pioneers encoding the
spatiotemporal dynamics into the visual representation via
Gaussian world model for single-arm settings, which ignores
the interaction of multiple embodiments for dual-arm systems
with significant performance drop. In this paper, we propose
ManiGaussian++, an extension of ManiGaussian framework
that improves multi-task bimanual manipulation by digesting
multi-body scene dynamics through a hierarchical Gaussian
world model. To be specific, we first generate task-oriented
Gaussian Splatting from intermediate visual features, which
aims to differentiate acting and stabilizing arms for multi-
body spatiotemporal dynamics modeling. We then build a
hierarchical Gaussian world model with the leader-follower
architecture, where the multi-body spatiotemporal dynamics is
mined for intermediate visual representation via future scene
prediction. The leader predicts Gaussian Splatting deformation
caused by motions of the stabilizing arm, through which the
follower generates the physical consequences resulted from
the movement of the acting arm. As a result, our method
significantly outperforms the current state-of-the-art bimanual
manipulation techniques by an improvement of 20.2% in 10
simulated tasks, and achieves 60% success rate on average in 9
challenging real-world tasks. Our code is available at https:
//github.com/April-Y¥z/ManiGaussian_Bimanual,

I. INTRODUCTION

General robotic bimanual manipulation agent is trend-
ing for their immeasurable potential in completing diverse
complex tasks across houses [50], [49], hospitals [23], and
factories [2]. A bimanual system is more than a naive
combination of separate single-arm agents, as it enables
challenging task that entails specific collaboration patterns
including simultaneously manipulating and stabilizing target
objects [28], [14]. Additionally, bimanual systems are often
outperform unimanual agents when multiple action steps can
be performed in parallel by different arms [15]. As a result,
general bimanual manipulation system that can interact with
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Fig. 1. Consider the human instruction ”Bring me the yellow item”, where
the task is considered successful if the right arm handover the yellow block
to the left arm. The previous method (Peract? [15]) attempts to pick up
the yellow block but fails to do so, while our ManiGaussian++ completes
the task successfully by explicitly encoding the scene dynamics via future
scene reconstruction in Gaussian embedding space.

diverse objects and environments across tasks is highly-
desired in recent years. Typically, a robot manipulation
agent [42], [15] comprises a perception module that encodes
the visual clues into latent representation, and a policy head
that maps these representation to the robotic action space.
However, conventional visual representations [15], [28] usu-
ally suffer from insufficient generalization ability to multi-
task bimanual manipulation scenarios, which is required to
mine the unstructured scene geometry across diverse tasks
and objects.

To address this, existing works [30], [52], [47] propose to
leverage self-supervised learning to enhance the generaliza-
tion ability of the visual representation for robot learning,
Earlier works [34], [33], [36] first propose to leverage
pretrained 2D visual representation, which have shown initial
success of visual representation learning but are constrained
to relatively simple tasks due to the lack of geometric
understanding like occlusion. To apply to more complex
manipulation tasks that require 3D scene understanding,
preceding methods [46], [52] attempt to model the workspace
via 3D reconstruction methods like Neural Radiance Fields
(NeRFs) [32] or Gaussian Splatting [26]. For example,
ManiGaussian [30] pioneers to explicitly encode the scene
dynamics via future scene reconstruction in Gaussian embed-
ding space, which shows impressive performance in single-
arm setting [25]. However, learning multi-body spatiotem-
poral dynamics in the dual-arm system poses challenges for
existing methods, thereby leads to severe performance drops
in bimanual manipulation scenarios.

In this paper, we propose a general bimanual manipulation
agent named ManiGaussian++, which leverages hierarchical
Gaussian world model to encode the multi-body spatiotem-
poral dynamics in dual-arm systems. Different from the
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prior ManiGaussian which only encodes coarse scene-level
spatiotemporal dynamics, ManiGaussian++ concentrates on
the multi-body spatiotemporal dynamics of the dual-arm
system for bimanual manipulation tasks. Therefore, the com-
plex interactions between the two manipulators and targets
are considered to accomplish diverse collaboration patterns.
More specifically, ManiGaussian++ first generates a task-
oriented Gaussian radiance field from intermediate visual
representations supervised by pre-trained vision-language
models (VLMs), allowing us to assign distinct roles to the
robot arms including stabilizing and acting arms for multi-
body spatiotemporal dynamics modeling. Subsequently, we
mine the multi-body spatiotemporal dynamics for inter-
mediate visual representations via future scene prediction,
where a hierarchical Gaussian world model with the leader-
follower architecture is utilized. The leader predicts Gaussian
Splatting deformation caused by motions of the stabiliz-
ing arm, through which the follower generates the physi-
cal consequences resulted from the movement of the act-
ing arm. ManiGaussian++ demonstrates significant improve-
ments over existing bimanual manipulation techniques across
10 simulated and 9 real-world tasks by sizable margins in
terms of success rate. The contributions are as follows:

o We propose a general robotic bimanual manipulation
agent named ManiGaussian++, which extends prior
ManiGaussian by introducing the hierarchical Gaussian
world model to learn the multi-body spatiotemporal
dynamics for bimanual tasks.

o We generate task-oriented Gaussian Splatting to dif-
ferentiate acting and stabilizing arms for multi-body
dynamics modeling, and we propose a hierarchical
Gaussian world model with future scene prediction to
mine the multi-body dynamics.

e We perform comprehensive experiments on 10 tasks
from RLBench2. The results indicate that our method
surpasses the state-of-the-art approaches by large
relative margins of 131.17%. We also evaluate
ManiGaussian++ in real bimanual settings and obtain
60% success rates across 9 real-world tasks.

II. RELATED WORK

Robotic Bimanual Manipulation. Generalizable bimanual
manipulation agent enables complex task completion by
introducing complex collaboration patterns, which is of great
importance in various applications, such as housekeeping
[49], healthcaring [23], [27], and manufacturing [2]. Existing
methods [15], [10], [8], [14] attempt to train a founda-
tion model for bimanual manipulation by manual-crafting
a large set of demonstrations for imitation learning. How-
ever, due to the precise coordination between two high-
degree-of-freedom arms required by bimanual tasks, teleop-
erating demonstrations for training generalizable policies is
costly [50], [5], [4], [45], which presents challenges for the
bimanual manipulation policy model to generalize to unseen
tasks. For instance, by predicting the keyframe action and
leveraging the 3D-aware voxel observation, a recent work
PerAct? [15] shows initial potential in single-task bimanual

manipulation while notably mitigating the demand of large-
scale expert demonstrations. Though PerAct? improves the
expressiveness of the policy network part by leveraging scal-
able multi-modal transformer [24], the visual representation
that bottlenecks the generalizability of bimanual manipula-
tion is neglected, which is the main focus of this paper.
Visual Representations for Robot Learning. To enhance
the generalizability of the robotic manipulation agents, prior
arts propose more powerful network architectures [12], [11],
[42], [15] or employ self-supervision [33], [36], [22], [30] in
visual representation learning. These methods aim to lever-
age diverse visual observations like mutli-view images [13],
[12], point cloud [3], [11], and voxel [42], [15], [28], but
often struggle with limited labeled data. To address this
problem, self-supervised methods [34], [33], [36] enhances
generalization ability through auxiliary tasks with prior
knowledge. Earlier studies [34], [33], [36] have focused
on enhancing 2D visual representations via self-supervised
techniques such as time-contrastive learning [33] and masked
modeling [36], but are limited to simpler tasks. Recent
approaches tackle 3D scene comprehension with techniques
like Neural Radiance Fields (NeRFs) [32] and Gaussian
Splatting [26], with method like ManiGaussian [30] encod-
ing scene dynamics for single-arm tasks. However, multi-
body dynamics in complex tasks require more advanced
approaches to handle significant challenges.

World Models. A world model simulates the future scene
according to the current state and agent action, which often
serves as an self-supervised objective to encode the underly-
ing scene dynamcis for autonomous agent of various appli-
cations like autonomous driving [43], [9], gaming [17], [18],
[20] and robotic manipulation [21], [44]. Early research [16],
[17], [18], [19] focus on learning a latent space for future
predictions with recurrent state-space models, demonstrating
significant effectiveness in both simulated and real-world
environments. With the evolution of cutting-edge network
architectures, world models that predict high-dimensional
representations are often used to predict the future image
[71, [39], [31], [38], voxel [S1] and Gaussian [1], [30], [48]
domains. However, the multi-agent nature of bimanual ma-
nipulation poses challenges to model the mutual interactions
between two manipulators and targets, and thus we introduce
a hierarchical Gaussian world model to overcome this.
Gaussian Splatting. Gaussian Splatting [26] is termed by
representing scenes using a collection of 3D Gaussian func-
tions that can be ‘splatted’ onto 2D planes with rasterization,
compared to implicit models like Neural Radiance Fields
(NeRF) [32], [6], [40]. Recent works [35], [41], [29], [30]
begin to notice the great potential of the Gaussian radiance
field in robotic manipulation, which is able to consistently
tracking the manipulator and target with its explicit and
editable nature. Although these methods depicts impres-
sive performance in unimanual settings by incorporating
Gaussian-based representation, bimanual manipulation that
involves complex multi-body dynamics is still unexplored.
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Fig. 2. The overall pipeline of ManiGaussian++. The task-oriented Gaussian radiance assigns unique labels to task-relevant agents and objects, and the

hierarchical Gaussian world model upon it predicts future scenes in a leader-follower manner to encode the multi-body dynamics for bimanual manipulation.

III. APPROACH

In this section, we first briefly introduce preliminaries
on bimanual manipulation, and then we depict an overview
of our pipeline. Subsequently, we present the task-oriented
Gaussian Splatting for multi-body modeling, and introduce
the hierarchical Gaussian world model to encode the multi-
body spatiotemporal dynamics. Finally, We describe the
learning objectives for supervisions.

A. Problem Formulation

Language-conditioned bimanual manipulation is essential
for next generation’s general intelligent robot. To carry
out various bimanual manipulation tasks, the agent must
interactively predict the next best poses of both end-effectors
to accomplish the human instruction, based on observations
including visual input and the robot’s proprioception. The
observation at the ¢, time step is o) = (C), D®) p®),
where C(Y) and D) respectively represent the RGB image
and the depth image. P(*) is the proprioception that contains
current time and gripper states. The action a® for each end-
effector at the t,, step contains the position a\, € RI00",
orientation a'!) € R(3605>3  gpenness a((,?en € 10,1 and an
indicator of whether to invoke collision avoidance of the
motion planner ag]ide €[0,1]. For robot learning, we assume
access to K offline trajectories composed of observation, left-
arm action and right-arm action triplets paired with human
instructions. To address the issue of limited demonstrations,
traditional arts [30] enhance the visual representation by
mining the spatiotemporal dynamics via self-supervised fu-
ture scene reconstruction. However, the multi-body nature of
the bimanual manipulation poses challenges to modeling the
spatiotemporal dynamics precisely, and the decoded actions
based on the ineffective visual representation fail to complete
human instructions with incorrect collaboration patterns.

B. Overall Pipeline

The overall pipeline of our ManiGaussian++ method is
shown in Figure [2] We first develop a task-oriented Gaussian
radiance field to distinguish stabilizing and acting arms,
where a stabilizing arm secures the object in hand while an
acting arm performs the task to mitigate the multi-modality
of bimanual manipulation. Subsequently, we build a hier-
archical Gaussian world model in leader-follow architecture
upon it to forecast the future scene, through which the multi-
body spatiotemporal dynamics can be encoded to discover
complex collaboration patterns. More specifically, we trans-
form the visual input from RGB-D cameras to voxel space
based on the calibrated camera parameters, which is then en-
coded by a sparse convolutional network as the visual repre-
sentation in a volumetric format. For task-oriented Gaussian
Splatting, we design a feed-forward Gaussian regressor to
infer the task-oriented Gaussian radiance field from the visual
representation, where each Gaussian particle is assigned
with a task-oriented instance logit distilled from pretrained
VLMs to differentiate acting and stabilizing arms for multi-
body interactions. We create a hierarchical Gaussian world
model with a leader-follower architecture to learn visual
representation through future scene prediction. The leader
anticipates deformation from the motion of the stabilizing
arm, allowing the follower to generate the effects of the
movement of the acting arm. Finally, we employ multi-modal
transformer PerceiverlO [24] to predict the optimal robot
actions based on the enhanced volumetric representation,
which comprehends the multi-body spatiotemporal dynamics
and thus can complete human instructions with precise
collaboration patterns.

C. Task-Oriented Gaussian Splatting

In order to capture the multi-body spatiotemporal dynam-
ics for general bimanual manipulation tasks, we start with a
task-oriented Gaussian Splatting that disentangles the acting



and stabilizing arms from cluttered scenes for representing
the visual scene. Gaussian Splatting [26] is trending with its
explicit nature that enables rapid rendering via rasterization.
A Gaussian radiance field represents a scene with multiple
Gaussian primitives, which can be parameterized by 6; =
(Wi, ciy iy Siy0;), which respectively represent the position,
color, orientation, scaling, and opacity for the ¢-th Gaussian
primitive. To render a novel image C, those 3D Gaussian
primitives can be projected onto the 2D camera plane via
differential tile-based rasterization. In this process, a typical
pixel p can be colored by the alpha-blend rendering:

N i-1
C(p) =Y aic; [[(1 - ) (D
=1 j=1

where N is the number of Gaussians in a tile, «; represents
the 2D density of the Gaussian points that can be computed
by w;, r; and s; of the parameters. Though the vanilla
Gaussian Splatting shows effectiveness in reconstructing 3D
appearance and geometry, it struggles to generate high-
quality task-oriented labels for relevant instances, which
is of significance to focus on learning precise multi-body
dynamics for bimanual manipulation tasks. To this end, we
modify the Gaussian parameters and parameterize a Gaussian
regressor to construct a task-oriented Gaussian radiance field,
where the instance labels that distinguish the stabilizing
and acting manipulators are learned simultaneously with the
appearance and geometry. Besides, we enable the Gaussian
particles to move with discrete time to account for the
spatiotemporal dynamics of the scene, where the parameter
of the i;;, Gaussian at the t;, is:

0 = 0,000, 400000 )
The positions, colors, orientations, scales, and opacities with
the superscript ¢ represent their counterparts at the ¢, step
in the movement. We append a lgt) € R3 variable as the
instance-level logit to the Gaussian parameter set, which
represents the probability of the Gaussian point belonging to
a specific task-relevant instance including different manipula-
tors or target objects. The instance map can also be rendered
by projecting the instance-level logits of Gaussian primitives
to the 2D camera plane. To be specific, the expected instance
logits L of a typical pixel p can be written as:

N i—1
Lp) =Y aili [J(1 = ). 3)
i=1 j=1

where we omit the ¢ superscript for brevity. To obtain
the ground-truth instance map for both manipulators and
target objects, we prompt the pretrained VLMs such as the
open-vocabulary detector GroundedSAM [37] based on the
keywords from human instructions.

D. Hierarchical Gaussian World Model for Bimanual Ma-
nipulation

Though the multi-body nature of bimanual manipulation
enables complicated task completion, it also introduces novel

challenges for the world model to learn multi-body spa-
tiotemporal dynamics beyond unimanual manipulation. In
order to capture the multi-body spatiotemporal dynamics for
the visual representation in general bimanual manipulation
tasks, we propose a hierarchical Gaussian world model with
a leader-follower architecture for precise future scene pre-
diction. The leader predicts Gaussian Splatting deformation
caused by motions of the stabilizing arm, through which the
follower generates the physical consequences resulted from
the movement of the acting arm. The hierarchical Gaussian
world model models the movement of explicit Gaussian
points conditioned on the robot’s action. For future prediction
of our hierarchical Gaussian world model, the dominant
movement can be regarded as rigid-body transform. There-
fore, we only predict the SE(3) movement of Gaussian
particle following the Newton-Euler equation, while keeping
the inherent properties including color, scaling, opacity, and
instance logits the same along the Markovian transition. The
Gaussian particle changes caused by arm motions can be
formulated as:

(Y Z (1D f AD 4 AED XD L ASD £ ARD), (@)

where we denote the changes of positions and orientation
by Augt), Argt) and Ap,;(lt), Argt) for stabilizing and acting
manipulator, respectively. The subscript ¢ for each Gaussian
particle is omitted here for brevity. To predict the movements
described in Equation (@) for multi-body spatiotemporal
dynamics learning, we parameterize a hierarchical Gaussian
world model that takes the visual representation as input,
and outputs the future multi-view images for photometric su-
pervision. More specifically, the hierarchical Gaussian world
model contains a representation network f, that infers in-
termediate visual representation from the voxel observation,
where ¢ refers to the learnable parameters. Then, a Gaussian
regressor gy is utilized to reconstruct the current task-
oriented Gaussian radiance field in a feed-foward manner.
For future scene reconstruction, a leader deformation model
gs,¢ interprets the preliminary movements imposed by the
stabilizing arm as a Gaussian deviation 05(t+1), a follower
deformation model ¢, » predicts the physical consequences
Gétﬂ) by concluding both the acting and stabilizing arm.
At last, a Gaussian renderer R in Equation (I)) projects the
predicted Gaussian radiance field onto the 2D camera plane:

Representation: v = f(0(®))

Gaussian regressor: 0 = g4 (v*)

Leader model: 6" =56 (0, a§t>,v(t)) ©)

Follower model: 6{"™ =g, ,(6"), al") a") v(®)

Gaussian renderer: C(#) LHD =R (9(H1))
where v denotes the enhanced visual representation, agt)
and agt) are the stabilizing and acting actions at the ¢, step.
In order to effectively forecast future scenes with the hier-
archical Gaussian world model, the visual representation is
enhanced to capture multi-body spatiotemporal dynamics of
the environment, which is crucial for generating appropriate
bimanual actions with complex collaboration patterns.



TABLE I
MULTI-TASK TEST RESULTS. MEAN SUCCESS RATES (%) OF MULTI-TASK AGENTS TRAINED WITH 100 DEMONSTRATIONS PER TASK AND

EVALUATED OVER 25 EPISODES.

Method / Task pick straighten 1ift push handover pu? in
laptop rope tray box easy fridge
PerAct® [15] 12 24 1 6 41 3
ManiGaussian [30] 8 28 4 24 36 4
ManiGaussian++ (Ours) 12 40 8 48 40 28
press handover sweep to take out Average Average
Method / Task buttons item dustpan tray Success 1 Rank |
PerAct® [15] 47 11 0 9 15.4 2.5
ManiGaussian [30] 36 12 24 12 18.8 2.2
ManiGaussian++ (Ours) 48 20 92 16 35.6 1.1

E. Learning Objectives

Current Scene Reconstruction. To encode the spatial con-
sistency into the visual representation for further multi-body
spatiotemporal dynamics digesting, we impose a multi-view
photometric loss to regularize the current Gaussian Splatting
generated from the Gaussian regressor:

»CRecon = Z ||C(t) (p) - C’(t) (p)||§7 (6)
p

where C'(¥) and C'(*) stand for the predicted and ground-truth
2D images from a randomly selected view at ty, time step,
respectively.

Task-oriented Embodiment Mask Prediction. The task-
oriented Gaussian radiance field differentiates acting and
stabilizing arms for the follow-up multi-body spatiotemporal
dynamics modeling. To optimize this, we first aggregate the
logits embedded in the Gaussian particles by rendering them
to the camera plane via rasterization, and then implement a
cross-entropy objective:

»CTask = - Z Z Bl (p) IOg Bl (p) (7)
p I

where B! and B are the predicted and ground-truth probabil-
ity. The predicted probability is computed by normalizing the
rendered instance logit map L via softmax, while the ground-
truth probability is a discrete label obtained by prompting the
VLM of a specific label [ in the 2D camera plane.

Future Scene Prediction. To embed the multi-body spa-
tiotemporal dynamics in the visual representations, we en-
courage the predicted scene based on the learned Gaussian
parameters to get close to the ground-truth one. As we can
not directly access the ground-truth future Gaussian radiance
field, the training goal is to align predicted future images
from multiple views with the ground-truth images obtained
by actually taking the bimanual action, as follows:

EPred — HC(t—H) _ C(t—H)H% (8)

where CU+D and CU¢+D) represent the predicted and
ground-truth future image, respectively.

Behavior Cloning. Following [42], [15] for fair compar-
isons, we leverage a multi-modal transformer Perceive-
rIO [24] to select the best candidates from discretized action
bins based on enhanced volumetric representation and lan-
guage instruction, where we leverage the cross-entropy loss
CFE to optimize action prediction as a classification problem:

Lyc=CE (al(:f)ﬁ él(etf)t) +CFE (ar(it;hw ar(itg)ht)v )

where él(sf)[ and &%)

righe are ground-truth actions of the left
and right manipulators from provided expert demonstrations,
respectively. The overall objective for our ManiGaussian++

agent at each time step is written as:

L= £BC + A ReconERecon + A Task‘CTask + )\PredACPredy (10)

where the hyperparameters Arecon, ATask, Apred Can be tuned
to balance various objectives.

IV. EXPERIMENTS

In this section, we first introduce the simulated and real-
world experiment setups. Then, we report the simulated
performance of our method compared with the state-of-
the-art approaches. We conduct a comprehensive ablation
study to validate the proposed task-oriented Gaussian radi-
ance field and the hierarchical Gaussian world model. We
interpret the proposed techniques by visualization. Finally,
we present qualitative results to depict the effectiveness of
our ManiGaussian++ in real-world settings.

A. Experiment Setup

Simulation. For benchmarking, we conduct our simula-
tion experiments on RLBench2 [15], a bimanual extension
from the popular RLBench [25]. It contains 10 challenging
languaged-conditioned manipulation tasks varying from dif-
ferent challenge levels. For agent observation, we employ
RGB-D images from six cameras with a resolution of 256 x
256, in line with [15]. We use the same number of cameras
as ManiGaussian [30] to provide multi-view supervision for
fair comparisons. In the training phase, we provide 100
demonstrations for each task, which are generated by an
Oracle scripted expert.



TABLE 11
COMPARISON OF OUR METHODS WITH DIFFERENT TECHNIQUES. WE MANUALLY CATEGORIZE THE 12 RLBENCH2 TASK TO 3 GROUPS FOR
FURTHER INTERPRETABILITY, THEN WE SELECT ONE TASK FROM EACH CATEGORY. FOR MORE DETAILS, PLEASE REFER TO THE SUPPLEMENTARY
FILE.

sweep to handover push

Row ID | Gaussian Splatting Task-oriented GS Hierarchical GWM dustpan item box Average T
1 X X X 0 11 6 5.67
2 v X X 24 12 24 20.00
3 v v X 32 16 32 26.67
4 v v v 92 20 48 60.00
Observation Ground-truth Ground-truth ManiGaussian

T, 2

| PSNR=21.36 | | PSNR=21.90 |

’

| PSNR=20.22}

" PsNRe2274]

)
(a) Front view (b) Novel view at current time step

Fig. 3.

(c) Novel view at future time step

Novel View Synthesis Results. Our ManiGaussian++ captures the multi-body spatiotemporal dynamics precisely, while ManiGaussian fails to

model it. Note that we turn off the behavior cloning loss for better illustration.

Real Robot. The experimental setup consists of two Uni-
versal Robots URSe arms equipped with Robotiq 2F-85
grippers, controlled via two Xbox controllers to collect
demonstration data. Two RGB-D Realsense cameras capture
640 x 480 resolution images at 30 Hz. While multi-view
cameras are utilized during the training phase, only a single
camera is used during inference. We collect 30 real-world
human demonstrations for training, while evaluating the
trained policy for 10 episodes with a Nvidia RTX 4080 GPU.
Baselines. We compare our ManiGaussian++ with the state-
for-the-art robotic bimanual manipulation methods, including
PerAct? [15], which is a strengthened version of the widely-
used single-arm agent PerAct [42]. Additionaly, we include
the former version Manigaussian [30] by modifying the
action dimension to be compatible with bimanual settings.
The primary evaluation metric is the task success rate, which
is calculated as the percentage of episodes in which the agent
completes the task within a budget of 25 steps.

B. Comparisons with the State-of-the-Arts

We compare the proposed ManiGaussian++ with the state-
of-the-art methods in the commonly-used bimanual manip-
ulation benchmark RLBench? and report the performances.
Our ManiGaussian++ achieves the best performance across
10 tasks ranging in different challenging levels, which
demonstrates the superiority of the proposed techniques.
Notably, by digesting the multi-body spatiotemporal dy-
namics in bimanual manipulation tasks, ManiGaussian++
outperforms its former version ManiGaussian by a sizable

relative improvement of 89.36% (18.8% vs 35.6%). Even the
enhanced version of PerAct? that leverages six cameras to
ensure seamless observation is also defeated by the proposed
ManiGaussian++, underling the importance of mining the
consistency from the provided multi-view images and the
multi-body spatiotemporal dynamics. The results prove the
capacity of the proposed ManiGaussian++ to handle general
robotic manipulation tasks.

C. Ablation Study

We propose task-oriented Gaussian Splatting to differenti-
ate acting and stabilizing arms for multi-body spatiotemporal
dynamics modeling, and hierarchical Gaussian world model
for visual representation. Table [[ shows the effectiveness
of each concept. We start with a vanilla PerAct® baseline
(5.67% success rate), and then progressively include the
proposed techniques. Using a Gaussian regressor to pre-
dict parameters improves performance by 14.33% (5.67%
vs 20.00%). Task-oriented Gaussian Splatting advances the
baseline by 21.00% (5.67% vs 26.67%), emphasizing the
importance of distinguishing arm roles for better collabora-
tion. Finally, the hierarchical Gaussian world model boosts
the performance by 33.33% (26.67% vs 60.00%), which
demonstrates the effectiveness of digesting the multi-body
dynamics for bimanual manipulation.

D. Qualitative Analysis

Figure [3] shows the novel view image synthesis results.
First, based on the front view observation where the gripper
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Fig. 5. Real-World Experiments with two URS5e manipulators.

shape cannot be seen, our ManiGaussian++ offers superior
detail in modeling buttons and grippers in novel views.
Second, our method accurately predicts future states based
on the recovered details.

For example, in the top case of the press buttons
task, our ManiGaussian++ is able to predict the current and
the future gripper position. This qualitative result demon-
strates that our ManiGaussian++ learns the intricate multi-
body dynamics successfully. In the bottom case, for the task
sweep to dustpan, ManiGaussian++ not only predicts
the future position, but also predicts the future location of
broom influenced by the gripper and the proper coordination
of both robot arms. These cases illustrate the generation
fidelity of the proposed hierarchical Gaussian world model.

E. Real-world Experiments

We validate Peract?, ManiGaussian and ManiGaussian++
with 9 challenging real-robot tasks, which is depicted in
Figure EI, our ManiGaussian++ outperform Peract? and
ManiGaussian by a sizable relative improvement of 100%
(31.11% vs 62.22%) and 36.57% (45.56% vs 62.22%),
shows that our method is able to complete all 9 tasks
simultaneously with only one model conditioned on natural
human language from scratch, without any pertaining on

Q>° @ v“
P

, ManiGaussian and ManiGaussian++ on 9 challenging real-world tasks.

the simulation or sim-to-real transferring. Notably, Figure [3]
shows that ManiGaussian++ is able to complete complex
tasks like Play ping pong and Fold Clothes that
involve complex collaboration patterns, attributing to the
proposed hierarchical Gaussian world model that encodes the
multi-body spatiotemporal dynamics for the visual represen-
tation. Besides, ManiGaussian++ is robust to distractors like
the lightning environment, which further validates the gener-
alizability obtained by mining the multi-body spatiotemporal
dynamics. Please refer to supplementary videos for more
real-world qualitative results and details on the task setups.

V. CONCLUSION

In this paper, we have presented ManiGaussian++, a
novel framework that addresses the challenges of multi-
task bimanual manipulation through hierarchical Gaussian
world modeling. Our approach extends the ManiGaussian
framework by explicitly modeling multi-body spatiotempo-
ral dynamics via a hierarchical Gaussian world model for
dual-arm collaboration. Specifically, We use task-oriented
Gaussian Splatting from visual features to differentiate acting
and stabilizing arms for dynamics modeling. A hierarchical
Gaussian world model employs a leader-follower architec-
ture: the leader predicts deformation from the stabilizing
arm, while the follower models the acting arm’s effects.
Through extensive experiments, ManiGaussian++ demon-
strates significant improvements over state-of-the-art general
bimanual manipulation methods, achieving an improvement
of 20.2% in 10 simulated tasks and 60% success rate in 9
challenging real-world tasks. Limitations include the demand
for calibrated multi-view cameras for supervisions, which
increases the cost of real robot deployment.
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