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Abstract

Visual navigation with an image as goal is a fundamental
and challenging problem. Conventional methods either rely
on end-to-end RL learning or modular-based policy with
topological graph or BEV map as memory, which cannot
fully model the geometric relationship between the explored
3D environment and the goal image. In order to efficiently
and accurately localize the goal image in 3D space, we
build our navigation system upon the renderable 3D gaus-
sian (3DGS) representation. However, due to the computa-
tional intensity of 3DGS optimization and the large search
space of 6-DoF camera pose, directly leveraging 3DGS for
image localization during agent exploration process is pro-
hibitively inefficient. To this end, we propose IGL-Nav, an
Incremental 3D Gaussian Localization framework for effi-
cient and 3D-aware image-goal navigation. Specifically, we
incrementally update the scene representation as new im-
ages arrive with feed-forward monocular prediction. Then
we coarsely localize the goal by leveraging the geomet-
ric information for discrete space matching, which can be
equivalent to efficient 3D convolution. When the agent is
close to the goal, we finally solve the fine target pose with
optimization via differentiable rendering. The proposed
IGL-Nav outperforms existing state-of-the-art methods by
a large margin across diverse experimental configurations.
It can also handle the more challenging free-view image-
goal setting and be deployed on real-world robotic platform
using a cellphone to capture goal image at arbitrary pose.
Code will be released.

1. Introduction
Image-goal navigation, which requires an agent initialized
in unknown environment to navigate to the location and ori-
entation specified by an image [35], is a fundamental prob-
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Figure 1. Our IGL-Nav effectively guides the agent to reach free-
view image goal via incremental 3D gaussian localization.

lem in a wide range of robotic tasks. This task requires
the agent to precisely understand the spatial information, as
well as to reason how to explore the scene with past obser-
vations, which is hard to learn with end-to-end RL [31] due
to low sample efficiency and catastrophic forgetting.

Recent advances in visual navigation have witnessed
significant progress in modular-based approaches [2, 3, 7,
14, 22], which establish an explicit memory to cache ob-
served environmental information and derive navigation
policies based on the memory representations. While these
approaches demonstrate enhanced capabilities for long-
horizon reasoning and temporal dependency modeling in
object-goal navigation tasks, their extension to image-goal
navigation remains challenging. Unlike object-goal sce-
narios that primarily rely on high-level semantic under-
standing, image-goal navigation necessitates the preserva-
tion and processing of low-level visual features, including
fine-grained texture patterns and color distributions. Con-
sequently, conventional representation paradigms of mem-
ory such as topological graphs prove insufficient for effec-
tively encoding the requisite environmental information in



image-goal settings. To address these limitations, RNR-
Map [14] introduces a renderable neural radiance map rep-
resentation. Drawing inspiration from NeRF [19], this rep-
resentation enables photorealistic image rendering from ar-
bitrary camera viewpoints. The renderable nature ensures
the preservation of crucial low-level visual features, which
has demonstrated superior performance in image-goal nav-
igation. However, since NeRF is an implicit field with
high computational cost, RNR-Map has to maintain the ren-
derable representation in a 2D BEV map for efficient and
explicit memory management. This 2D projection inher-
ently loses critical 3D structural information, forcing RNR-
Map to impose strict constraints on goal image acquisition,
specifically requiring horizontal camera angles to ensure
alignment with its BEV map. This significantly reduces
its applicability in real-world scenarios. Therefore, an effi-
cient 3D-aware memory representation is still desirable for
image-goal navigation.

In this paper, we propose to leverage 3D Gaussian Splat-
ting (3DGS) [10] as the scene representation for image-
goal navigation. The 3DGS representation demonstrates
exceptional suitability for the task: (1) as an explicit rep-
resentation, 3DGS can be easily initialized with the ob-
served RGB-D image and be incrementally accumulated in
3D space; (2) it supports efficient differentiable rendering,
which can be used to localize the camera pose of goal im-
age with iterative optimization. Despite these compelling
properties, adapting 3DGS representations for image-goal
navigation presents significant challenges. While 3DGS
achieves rendering speeds orders of magnitude faster than
NeRF, their optimization process remains computationally
prohibitive for real-time online inference required in navi-
gation tasks. Furthermore, goal image localization within
scene-level 3DGS maps becomes intractable due to the ex-
ponential search space complexity inherent in 6-DoF cam-
era pose estimation. To this end, we propose IGL-Nav, an
Incremental 3D Gaussian Localization framework that (1)
progressively constructs 3DGS through feed-forward pre-
diction, eliminating offline optimization; and (2) enables ef-
ficient hierarchical goal search by harnessing both geomet-
ric and photometric attributes of 3DGS through our novel
coarse-to-fine localization strategy. Extensive experiments
on various datasets in Habitat simulator show our IGL-Nav
significantly outperforms previous state-of-the-art image-
goal navigation methods. Moreover, benefit from our ex-
plicit 3D representation, IGL-Nav is also able to handle the
more practical free-view image-goal setting, where there is
no assumption on both camera intrisincs and extrinsics of
the goal image. We further deploy our method on real-world
robot, where a casually taken photo from a cellphone can be
used as goal to guide the agent navigating to specified loca-
tion in complicated and large-scale environments.

2. Related Work

3D Gaussian Splatting. 3DGS [10] has emerged as a
powerful technique for 3D scene representation. It repre-
sents a scene as a dense set of points with gaussian em-
bedding and leverages efficient rasterization techniques for
high-fidelity, real-time rendering. Recently, feed-forward
3DGS models [4–6] have been proposed, primarily to ad-
dress the issue of sparse-view scene reconstruction. Unlike
traditional methods that iteratively optimize 3DGS param-
eters, feed-forward 3DGS predicts the gaussian distribution
through a network, significantly improving modeling effi-
ciency. In embodied AI, 3DGS has been applied to manip-
ulation tasks, with dynamic 3DGS frameworks and gaus-
sian world models used to model and predict robotic ac-
tions [18]. And systems like Gaussian-Grasper [34] lever-
age RGB-D inputs for language-guided grasping. 3DGS
also helps bridge the gap between simulated and real-world
environments for generalizing learned behaviors. Tech-
niques such as Robo-GS [17] and SplatSim [21] improve
Sim-to-Real transfer by leveraging efficient representation
of 3DGS. The incremental 3DGS scene representation used
in our IGL-Nav also follows the paradigm of feed-forward
3DGS, making it suitable for scene modeling based on on-
line inputs in navigation tasks.

Image-goal Navigation. Image-goal navigation involves
the agent navigating to the location where the goal image
is captured [35], requiring precise alignment in both posi-
tion and orientation. To address this challenge, researchers
have employed various strategies. Some focus on optimiz-
ing reinforcement learning (RL) policies [1, 31, 32] that di-
rectly map observations to actions. Others concentrate on
constructing detailed maps [3, 11, 14, 23], or on develop-
ing carefully crafted matching algorithms [28]. However,
image-goal navigation requires that the query image be cap-
tured by the agent’s camera, which limits the camera’s in-
trinsic parameters, height, and the fact that it can only rotate
around the Z-axis. Considering these constraints in practi-
cal applications, we propose free-view image-goal naviga-
tion, where the target image can be captured by any camera
at free 3D position and orientation. In addition, instance
image-goal navigation [12] is a similar task, where the tar-
get image focuses on specific categories of objects within
the scene. In instance image-goal task, GaussNav [15] also
uses a 3DGS-based scene representation. However, Gauss-
Nav requires first completing the exploration of the entire
building to optimize the 3DGS representation, and then ren-
der images at multi poses for comparison with the target
image. This approach limits efficiency in practical appli-
cations. In contrast, our IGL-Nav simultaneously performs
exploration, incremental modeling, and target localization,
and it incorporates a coarse-to-fine localization strategy,
making full use of the 3DGS representation.



3. Approach
In this section, we first describe our task definition. Next,
we explain several core modules of IGL-Nav, including in-
cremental scene representation with 3DGS, and coarse-to-
fine target localization. Finally, we detail the overall navi-
gation pipeline.

3.1. Problem Statement
We study the problem of free-view image-goal navigation,
which is a more challenging and practical setting. In this
task, a mobile agent is instructed with navigating to a spec-
ified location depicted by an image Ig , taken by camera A
with pose Tg . The agent is equipped with camera B. It re-
ceives posed RGB-D video stream {It,Dt,Tt}Tt=1 and is
required to execute an action a ∈ A at each time it receiv-
ing a new RGB-D observation. It,Dt,Tt refer to RGB
image, depth image and camera pose at time instant t. A
is the set of actions, which consists of move forward,
turn left, turn right and stop. The task is consid-
ered successfully completed if the agent terminates within
a horizontal neighborhood of the target pose, satisfying
||P(Tfinal)−P(Tg)||2 < ϵ within a maximum of T navi-
gation steps. Here P refers to 3D-to-BEV projection.

Comparison with Relevant Tasks. In the free-view
image-goal navigation, there is no assumption on the cor-
relation between camera A and B. For example, in real ap-
plication scenarios, A can be a cellphone, and B is a RGB-
D camera with totally different camera intrinsics. Previ-
ous image-goal setting [7, 14] can be regarded as a special
case of our task where A ≡ B and Tg is restricted to lie
within camera B’s achievable pose space. Instance-image-
goal navigation [13] also aims to decouple camera A and B.
However, this setting requires that there must be an instance
located at image center, and only 6 categories of instances
are supported. These limitations fundamentally constrain
the system’s operational flexibility and real-world deploy-
ment potential. In this paper, we conduct experiments on
both conventional and free-view image-goal settings for a
comprehensive evaluation of different approaches.

3.2. Incremental Scene Representation
We adopt 3DGS as our scene representation due to its ex-
plicit nature and efficient rendering capability. However,
the original 3DGS are obtained through offline optimiza-
tion on image set and thus hard to be applied in real-time
tasks. Recent feed-forward methods [4–6] abandon opti-
mization and directly predict pixel-aligned 3DGS parame-
ters, but they still rely on multi-view images to reconstruct
geometric information of the scene. In visual navigation,
the agent needs to incrementally build scene representation
along with its exploration, so the 3DGS should be gener-
ated in real-time and update as new images arrive. To ac-
commodate streaming video input while effectively leverag-

ing camera pose and depth priors, we present the first feed-
forward 3DGS reconstruction model for monocular RGB-D
sequences, which supports real-time 3DGS reconstruction
and incremental accumulation.

Gaussian Parameters Prediction. At time step t, the
agent receives new RGB-D observations It ∈ RH×W×3

and Dt ∈ RH×W×1. Our incremental reconstruction
model is essentially a mapping fθ from observations to
3DGS parameters, including position µk, opacity αk, co-
variance Σk and spherical harmonics ck:

fθ : (It,Dt) 7→ {(µk, αk,Σk, ck)}H×W
k=1 (1)

The 3DGS parameters are predicted in a pixel-aligned man-
ner, thus an observation input of size H × W corresponds
to an output of H ×W gaussians.

The feed-forward model fθ is shown in Figure 2. We
first concatenate the normalized RGB and depth images,
and then extract dense monocular scene embedding E′

t with
a UNet-based encoder E . Then 3DGS parameters are re-
gressed through a gaussian head H, composed of a few
CNN and linear layers. This process can be expressed as:

∆C2D,∆D, α,Σ, c = H(E′), E′ = E(I,D) (2)

where ∆C2D and ∆D are residuals of image coordinates
and depth. We omit subscript t for simplicity. Using the
camera intrinsic matrix M, pose Tt and inverse projection
Proj−1, we can compute the 3DGS positions as:

µ = Proj−1(C2D +∆C2D,D +∆D |M,Tt) (3)

We also lift E′ from 2D to the corresponding 3D posi-
tions. Finally, the 3DGS scene representation G and the
corresponding 3D embedding E can be updated as: Gt =
Gt−1 ∪ (µt, αt,Σt, ct) and Et = Et−1 ∪ E′

t. When the
number of 3DGS in the scene is large, we prune Gt and
Et based on opacity and 3DGS density to reduce memory
footprint. Additionally, we can use E to extract the 3D em-
bedding Eg of the target image Ig . If depth and camera
intrinsics are unavailable for Ig , we simply use a monocu-
lar depth estimator [20] to predict them.

Training and Loss. Our feed-forward model can be
trained using passive offline RGB-D video streams. We
randomly sample training episodes from navigation train-
ing set. In each episode, K frames are randomly selected
to predict 3DGS parameters, and images from other view-
points are rendered for loss computation. The training loss
is a linear combination of L-2 and LPIPS [33] losses.

3.3. Coarse-to-fine Localization
Since the target image is captured by an arbitrary camera
at any pose (6-DoF), the search space of the target is ex-
tremely large. To perform efficient and accurate visual nav-
igation, we design a coarse-to-fine target localization strat-
egy. Coarse localization leverages the incremental scene
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embedding Et to predict the approximate target location in
real-time during exploration. Once the agent is close to the
target, fine localization is employed to accurately determine
the accurate target position and guide the agent to reach it.

3.3.1. Coarse Target Localization

Although camera A can capture the target image at an arbi-
trary pose, we observe that the top frame of the camera is
almost always parallel to the ground when taking a photo,
as shown in Figure 3. Therefore, we can represent the ac-
tual camera rotation with (θ, ϕ), which denotes a rotation
around the X-axis by θ degrees, followed by a rotation to-
wards the Z-axis by ϕ degrees. Based on this observation,
we define a sphere-based space S : {(x, y, z, θ, ϕ)} to rep-
resent camera pose. Here (x, y, z) represents the position
of camera A and (θ, ϕ) refers to A’s rotation. We can thus
represent the target pose Tg as (xg, yg, zg, θg, ϕg). Once
target region described in Ig is observed, the 3D embed-

ding Eg should be aligned with the scene embedding Et

under translation (xg, yg, zg) and rotation (θg, ϕg).
To efficiently search the target camera pose in the five-

dimensional space, we discretize S to reduce the search
space. For (x, y, z), the 3D space is voxelized into grids
{(xi, yi, zi) | xi = ⌊x

v ⌋, yi = ⌊y
v ⌋, zi = ⌊ z

v ⌋}, where v is
voxel size. For (θ, ϕ), we discretize the spherical surface
into N vertices of a hierarchical mesh via γ-level subdivi-
sion of a regular icosahedron. In this way, we can rotate
Eg according to the discretized sphere to obtain N 3D em-
beddings {E1

g, ...,E
N
g }. By translating these embeddings

to the discretized voxel grids and computing the extent of
alignment between the translated embedding and Et, the
coarse target pose can be determined by:

maximize
i,k

A(Et, T (Ek
g , (xi, yi, zi))) (4)

where A computes the extent of alignment between two sets
of 3D features. T stands for translation operation. i and k
are used to query the corresponding (x, y, z, θ, ϕ).

However, the above operation is still hard to achieve real-
time inference. We need to traverse all voxel grids and
compare the translated 3D embedding with Et. Assume
there are V grids at all, then V × N times comparisons
should be performed. Moreover, during each comparison,
we should compute the geometric similarity between two
3D pointclouds as well as their feature similarity, which is
especially time-consuming and hard to be accelerated on
GPUs. To solve this problem, we propose to further dis-
cretize the 3D embeddings Et and Eg . For Et, we can sim-
ply quantize the pointclouds into voxels, where voxel fea-
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tures are obtained by taking average of the pointcloud fea-
tures inside each voxel. For {E1

g, ...,E
N
g }, we uniformly

quantize them into L × L × L voxels. Note that although
{E1

g, ...,E
N
g } are different pointclouds, they will share the

same shape after voxelization, which forms a 3D convolu-
tional kernel K ∈ RL×L×L×Cin×Cout . Here Cin refers to
the output channel of E , Cout equals to the number of ker-
nels N . Therefore, Eq (4) can be rewritten as:

argmax
x,y,z,k

C(f1(V(Et)), f2(K))[x][y][z][k] (5)

where C means 3D convolution operation, V quantizes
scene embedding Et into X × Y × Z voxels. We use two
MLP f1 / f2 with input channel Cin and output channel
C ′ to project scene embedding and convolutional kernel to
a learnable feature space before convolution, which further
aligns the embedding space of Et and Eg . The activation
map after 3D convolution is of shape X × Y × Z × N ,
from which we query index of the maximum value and thus
obtain a coarse localization of the target pose.

Training and Loss. Similar to the scene representation
training, we train the coarse localization module using of-
fline passive video streams. In each training segment, we
randomly select a position and capture target images with
arbitrary intrinsic parameters and orientations. We use focal
loss [16] to supervise the activation map after 3D convolu-
tion. Additionally, we apply cross-entropy loss to supervise
the outputs nearby target pose in the activation map.

3.3.2. Fine Target Localization
Our fine localization method aims to accurately determine
the target’s 6-DoF pose once the agent is close to the target
region. It leverages the differentiable rendering ability of
3DGS to reach target pose via iterative optimization.

Rendering-based Stopper. First, we use a rendering-
based stopper to determine if the agent is close to the target.
Since the intrinsics of camera A and B may differ signifi-
cantly, directly comparing the current observation with the
target image with feature matching is difficult. Thanks to
the real-time rendering capability of 3DGS Gt, we can ren-
der an image at camera B’s current viewpoint with the same

intrinsic parameters as camera A. We use a local feature
matching method, LoFTR [26], to predict matching pairs
(xg,xt) between the target image and the rendered image.
Here (xg,xt) is the coordinate set of matched pixels. If
the number of matching pairs exceeds a threshold τ , it is
considered that Ig appears in agent’s field of view.

Matching-constrained Optimization. Via differen-
tiable rendering, we can optimize the current camera pose
with photometric loss between the rendered image and Ig ,
and between rendered depth and Dg (Dg/Mg are the depth
/ intrinsics of Ig , which are estimated by [20] if not avail-
able), as done in [9, 27]. Although this is an intuitive way
to solve Tg , we empirically find it leads to unsatisfactory
performance in our case where the quality of Gt may de-
grade due to incremental accumulation without optimiza-
tion. Fortunately, we observe the pixels that are successfully
matched are of high quality. In order to overcome the im-
perfect details in the rendering results, we propose to only
focus on the matching pairs for accurate camera pose opti-
mization. The problem can be formulated as:

T̂ = argmin
T∈SE(3)

L(T | Ig,Dg,Mg,Gt) (6)

We iteratively optimize the pose T to minimize the geomet-
ric discrepancy between rendering results and target image.
At each iteration of optimization, we leverage current T for
rendering and obtain the matched points in Euclidean space:

(xg,x), (dg,d) = M(Ig,Dg,R(Gt |Mg,T)) (7)

(Xg,X) = Proj−1((xg,x), (dg,d) |Mg) (8)

where R is differentiable rendering of color and depth. The
matching and querying operation M first adopts LoFTR
to get matching pair (xg,x) between Ig and the rendered
RGB image, and then queries the corresponding depth value
(dg,d) from Dg and the rendered depth respectively. Then
we formulate the optimization loss as:

L =
1

Q

Q−1∑
i=0

(|Xi
g −Xi|2) (9)

where Q is the number of matching pairs. Note that LoFTR
predicts (xg,x) in a differentiable way, so gradient can be
backpropagated through both the rendered color and depth
images. In this way, we effectively align T and Tg by fo-
cusing on the most confident rendering results.

3.4. Navigation
We divide the navigation process into two stages: ex-
ploration based on coarse localization and target reaching
based on fine localization. Figure 4 illustrates the workflow
of IGL-Nav. We will describe each stage in this section.

Exploration for Target Discovery. When the agent is
initialized in a new environment, its observations of the



Table 1. Image-goal Navigation Result. SR: Success Rate, SPL: Success weighted by Path Length. The best result in each column is bold,
and the second best is underlined.

Straight Curved

Method Easy Medium Hard Overall Easy Medium Hard Overall
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

DDPPO [29] 43.2 38.5 36.4 34.8 7.4 7.2 29.0 26.8 22.2 16.5 20.7 18.5 4.2 3.7 15.7 12.9
NRNS [7] 64.1 55.4 47.9 39.5 25.2 18.1 45.7 37.7 27.3 10.6 23.1 10.4 10.5 5.6 20.3 8.8
ZSEL [1] - - - - - - - - 41.0 28.2 27.3 13.9 18.6 9.3 25.9 17.6
OVRL [32] 53.6 34.7 48.6 33.3 32.5 21.9 44.9 30.0 53.6 31.8 47.6 30.2 35.6 22.0 45.6 28.0
NRNS + SLING [28] 85.3 74.4 66.8 49.3 41.1 28.8 64.4 50.8 58.6 16.1 47.6 16.8 24.9 10.1 43.7 14.3
OVRL + SLING [28] 71.2 54.1 60.3 44.4 43.0 29.1 58.2 42.5 68.4 47.0 57.7 39.8 40.2 25.5 55.4 37.4
RNR-Map [14] 76.4 55.3 73.6 46.1 54.6 30.2 68.2 43.9 75.3 52.5 70.9 42.3 51.0 27.4 65.7 40.8
FeudalNav [8] 82.6 75.0 71.0 57.4 49.0 34.2 67.5 55.5 72.5 51.3 64.4 40.7 43.7 25.3 60.2 39.1
IGL-Nav (Ours) 87.9 82.5 80.8 69.0 61.7 40.9 76.8 64.1 82.8 77.7 80.7 70.0 57.0 39.6 73.5 62.4

scene are insufficient. Therefore, we combine coarse tar-
get localization with frontier-based exploration to explore
the scene and discover potential targets. Based on the posed
RGB-D inputs, we maintain an online occupancy map to
indicate explored, unexplored and occupied area in BEV,
where the frontiers of explored area can be computed. At
each time step, we select the nearest frontier to the agent and
generate binary scores Sf on the BEV map, where points
on the selected frontier are set to 1, others are set to 0. We
then project the activation map obtained in our coarse tar-
get localization module to BEV to get Sa. By computing
a weighted sum of the frontier score map Sf and the acti-
vation map Sa, the agent can select the location with high-
est score to explore. We adopt Fast Marching Method [25]
(FMM) for path planning and action generation given the
to-be-explored location.

Reaching Target. During exploration, the agent gradu-
ally approaches the target. We use the rendering-based stop-
per to determine if the target appears in agent’s field of view.
Once the target is detected, we switch to fine localization to
compute the precise target pose. The XY coordinates of the
computed pose is set to be destination, for which we apply
FMM again for navigation.

4. Experiment
In this section, we first describe our experimental setting.
Then we compare IGL-Nav with state-of-the-art image-goal
navigation methods. Finally we conduct in-depth module-
based analysis on our framework and further provide real-
world deployment result.

4.1. Experimental Setup
We conduct experiments on image-goal navigation and the
more challenging free-view image-goal navigation tasks.

Datasets and Benchmarks. For image-goal naviga-
tion, we follow the public Gibson [30] image-goal naviga-
tion dataset within the Habitat simulator [24] introduced by
NRNS [7]. The Gibson dataset includes 72 houses for train-
ing and 14 for validation. The NRNS dataset contains two

path types (straight and curved), each with three difficulty
levels (easy, medium, hard). For free-view image-goal nav-
igation as introduced in Sec. 3.1, we collect a large amount
of data with Gibson. Given the significant impact of the
camera’s field of view (FOV) on scene matching, we cate-
gorize our dataset into two FOV-based groups (50◦ ∼ 75◦

and 75◦ ∼ 100◦), which can be intuitively understood as
portrait and landscape orientations. Each category further
includes three difficulty levels based on distance. Addition-
ally, compared to the NRNS dataset, our free-view image-
goal navigation dataset features target images captured from
arbitrary angles and heights. Each of the six subsets con-
tains 500 randomly sampled episodes.

Compared Methods. We compare IGL-Nav with ex-
isting state-of-the-art image-goal navigation methods [1, 7,
8, 14, 28, 29, 32]. For image-goal setting, we report re-
sults from the respective papers. For the proposed free-view
image-goal setting, we evaluate open-sourced methods on
this benchmark and compare with them. Since some meth-
ods [7, 28, 29, 32] only release test code, we perform zero-
shot transfer to apply them to the new setting without re-
training. We also report the zero-shot performance of IGL-
Nav for fair comparison. For methods [7, 29] that provide
training scripts, we train them on the free-view image-goal
navigation data for comparison.

4.2. Comparison with State-of-the-art
We compare with state-of-the-art image-goal navigation
methods on the two benchmarks described above. Table
1 demonstrates the results on image-goal navigation task.
IGL-Nav establishes new state-of-the-art performance and
outperforms previous methods by a large margin on all met-
rics, which validates the effectiveness of 3D gaussian repre-
sentation for image-goal navigation.

The results on free-view image-goal navigation task is
shown in Table 2. As this task is much more challeng-
ing than conventional image-goal setting, we observe a sig-
nificant performance drop on each metric. When directly
transferred from image-goal to free-view image-goal set-



Table 2. Free-view Image-goal Navigation Result. SR: Success Rate, SPL: Success weighted by Path Length.

Narrow FOV (50◦ ∼ 75◦) Wide FOV (75◦ ∼ 100◦)

Method Easy Medium Hard Overall Easy Medium Hard Overall
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

Zero-shot Transfer (Training on Image-goal Navigation Data)

DDPPO [29] 15.8 10.5 9.6 7.2 5.4 3.1 10.3 6.9 20.2 16.5 16.6 12.5 9.8 5.7 15.5 11.6
NRNS [7] 19.8 10.6 15.8 9.0 7.8 4.0 14.5 7.9 28.4 16.6 21.2 14.5 10.6 5.9 20.1 12.3
OVRL [32] 23.8 16.6 19.2 10.5 8.2 6.9 17.1 11.3 27.6 19.2 22.8 12.6 14.8 8.6 21.7 13.5
NRNS + SLING [28] 32.8 15.3 23.6 13.2 9.8 5.6 22.1 11.4 38.6 19.1 32.6 18.5 17.2 8.3 29.5 15.3
OVRL + SLING [28] 28.2 20.1 23.2 18.7 11.8 7.1 21.1 15.3 36.4 25.9 31.6 18.5 15.2 7.6 27.7 17.3
IGL-Nav (Ours) 53.2 45.0 47.6 40.3 28.4 19.1 43.1 34.8 56.0 46.9 55.2 44.5 31.0 18.1 47.4 36.5

Supervised (Training on Free-view Image-goal Navigation Data)

BC + GRU 13.2 6.8 10.4 8.8 6.6 4.9 10.1 6.8 22.0 14.4 16.0 11.4 9.2 6.9 15.7 10.9
BC + Metric Map 22.8 15.9 20.6 15.6 7.4 5.2 16.9 12.2 25.4 19.5 22.8 18.5 4.8 3.5 17.7 13.8
DDPPO [29] 19.4 11.3 16.4 10.4 9.6 6.0 15.1 9.2 26.8 17.8 19.0 12.4 15.6 9.8 20.5 13.3
NRNS [7] 30.8 24.4 27.8 24.5 11.2 8.9 23.3 19.3 39.6 35.0 35.8 30.1 13.8 8.3 29.7 24.5
NRNS + SLING [28] 40.2 31.8 37.2 23.9 19.8 9.8 32.4 21.8 49.8 35.0 40.8 30.4 21.6 12.7 37.4 26.0
IGL-Nav (Ours) 70.2 65.4 59.6 51.2 36.8 27.0 55.5 47.9 77.2 71.0 68.8 60.2 39.2 29.5 61.7 53.6

Table 3. Performance of IGL-Nav when depth and camera intrin-
sics are unavailable.

Method Narrow FOV (50◦ ∼ 75◦) Wide FOV (75◦ ∼ 100◦)
SR SPL SR SPL

Predicted Depth 50.8 43.4 54.2 46.5
Measured Depth 55.5 47.9 61.7 53.6
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Figure 5. Rendering results of our incremental 3DGS.

ting, IGL-Nav still maintains a huge performance lead com-
pared with other state-of-the-art methods. The performance
of IGL-Nav can be further boosted with training data on the
free-view image-goal task. Note that the zero-shot trans-
ferring performance of IGL-Nav is even better than other
methods under supervised setting, which demonstrates the
great generalization ability of our approach.

4.3. Analysis of IGL-Nav
We further conduct in-depth module-by-module analysis on
our IGL-Nav framework with sufficient visualization results
and ablation studies, which is divided into three parts ac-
cording to our module design. All ablation studies are con-
ducted on the free-view image-goal setting.

Incremental 3DGS Prediction. Following the setting
of RNR-Map [14], we assume depth information and cam-
era intrinsics are known in our experiments. When these

Table 4. Effects of different subdivision levels in coarse target
localization to the final performance.

Level (γ) Narrow FOV (50◦ ∼ 75◦) Wide FOV (75◦ ∼ 100◦)
SR SPL SR SPL

1 17.8 10.9 23.4 14.5
2 40.2 33.9 47.9 41.2
3 55.5 47.9 61.7 53.6

Table 5. Effects of different stoppers in fine target localization to
the final performance.

Stopper Narrow FOV (50◦ ∼ 75◦) Wide FOV (75◦ ∼ 100◦)
SR SPL SR SPL

IGL-Nav w/out Stopper 45.2 31.9 44.3 35.0
IGL-Nav w/ SLING [28] 48.0 39.9 50.2 43.7

IGL-Nav 55.5 47.9 61.7 53.6

information is unavailable, we can simply adopt a depth es-
timator [20] to predict them. As shown in Table 3, with pre-
dicted depth and camera intrinsics, the performance of IGL-
Nav is still robust. We further visualize rendering results of
our 3DGS representation in Figure 5. Although maintained
in an incremental and feed-forward manner, our 3DGS still
demonstrates photorealistic novel view synthesis capability.

Coarse Target Localization. In our coarse localization
module, the sphere space is discretized with a regular icosa-
hedron and its γ-level fractal. We study the the effects of
different levels to the final performance in Table 4. It is
shown that using a 3-level subdivision achieves best perfor-
mance, because a finer discretization will reduce quantiza-
tion error and improve the accuracy of coarse localization.

Fine Target Localization. We compare different stop-
pers in Table 5. The first row refers to only using coarse
target localization, and the second row refers to using the
widely adopted SLING [28] as the stopper and fine local-
ization module. It is shown that our 3DGS-based stopper
and matching-constrained optimization is more suitable for
the overall system of IGL-Nav.
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Figure 6. Visualization of navigation process in Habitat simulator.
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Figure 7. Visualization of navigation process in real world.

We also visualize the overall navigation process in Fig-
ure 6. The agent is guided with frontier location, activa-
tion map obtained with 3D convolution and iterative pose
optimization during the exploration. It is shown that our
IGL-Nav can effectively localize the target image even with
partial observation, and accurately guide the agent to final
location with fine-grained rendering-based optimization.

4.4. Real-world Deployment
We further deploy IGL-Nav on real-world robotic platform
to test its generalization ability. The model is directly taken
from the free-view image-goal setting (supervised) without
any finetuning on real-world data. As shown in Figure 1
and 7, we use a cellphone to capture the target image in a
viewpoint that is unreachable by the robotic agent’s cam-
era. Benefit from the flexible rendering capability of 3DGS
representation, IGL-Nav effectively reaches this free-view
goal with the coarse-to-fine localization method.

5. Conclusion
In this paper , we have proposed IGL-Nav for efficient and
3D-aware image-goal navigation. We incrementally main-

tain a 3DGS scene representation in feed-forward manner,
which is then utilized for coarse-to-fine target localization.
We analyze the pose space of the goal image and discretize
both the pose space and scene embedding to apply efficient
3D convolution-based coarse matching. When the agent
is close to the goal, we switch to fine localization by op-
timizing the camera pose via differentiable rendering on
the confident matching pairs. The proposed IGL-Nav sig-
nificantly outperforms existing state-of-the-art methods on
image-goal and free-view image-goal settings. Real-world
experiments further demonstrates our generalization ability.
A limitation of IGL-Nav is that it requires depth and cam-
era intrinsics of goal image. However, as we show in exper-
iments, using existing monocular depth estimation [20] to
predict them can satisfactorily solve this problem.
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