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Embodied Instruction Following in Unknown Environments
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Abstract— Enabling embodied agents to complete complex
human instructions from natural language is crucial to au-
tonomous systems in household services. Conventional methods
can only accomplish human instructions in the known environ-
ment where all interactive objects are provided to the embodied
agent, and directly deploying the existing approaches for the
unknown environment usually generates infeasible plans that
manipulate non-existing objects. On the contrary, we propose
an embodied instruction following (EIF) method for complex
tasks in the unknown environment, where the agent efficiently
explores the unknown environment to generate feasible plans
with existing objects to accomplish abstract instructions. Specif-
ically, we build a hierarchical embodied instruction following
framework including the high-level task planner and the low-
level exploration controller with multimodal large language
models. We then construct a semantic representation map of
the scene with dynamic region attention to demonstrate the
known visual clues, where the goal of task planning and scene
exploration is aligned for human instruction. For the task
planner, we generate the feasible step-by-step plans for human
goal accomplishment according to the task completion process
and the known visual clues. For the exploration controller,
the optimal navigation or object interaction policy is predicted
based on the generated step-wise plans and the known visual
clues. The experimental results demonstrate that our method
can achieve 45.09% success rate in 204 complex human in-
structions such as making breakfast and tidying rooms in large
house-level scenes. Code and supplementary are available at
https://gary3410.github.io/eif unknown/.

I. INTRODUCTION

Building intelligent autonomous systems [6], [11], [19],
[8] to complete household tasks such as making breakfast
and tidying rooms is highly demanded to reduce the laborer
cost in our daily life. The agent is required to understand
the visual clues of the surrounding scene and the language
instructions, and feasible action plans are then generated for
object interaction with the goal of high success rate and low
action cost to accomplish human demands.

To achieve this, end-to-end methods [12] directly generate
the low-level actions from raw image input and natural
language with the supervision of expert trajectories. To
reduce the learning difficulties in the complex task, modular
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methods [5], sequentially learn the instruction comprehen-
sion, state perception, spatial memory construction, high-
level planning and low-level control to complete human
goals. Since embodied agents are expected to complete more
diverse and complex instructions, large language models
(LLMs) are widely employed in EIF [17] due to their strong
reasoning power and high generalization ability. However,
existing methods can only generate plans in known envi-
ronments where categories of all interactable objects in the
scene are given to LLMs. Since the agent does not know the
objects in the unknown environment, the generated plans are
usually infeasible because of interacting with non-existing
objects. Fig. 1 (a) demonstrates an example of existing
methods, where the agent is unaware that no bottles exist in
the unknown environment. Interacting with the non-existent
bottles based on the infeasible plan fails to accomplish the
human goals of water serving.

In realistic deployment scenarios, household agents usu-
ally work in unknown environments without stored scene
maps. Building scene maps in advance cannot accurately
represent the scene, where object properties such as location
and existence change frequently due to human activity in
daily life. For example, the mug may be on the dining table
and the coffee table respectively when humans are having
dinner and watching TV. Meanwhile, potatoes might have
been consumed and tomatoes are then purchased for the
next breakfast. Therefore, failing to generate feasible plans in
unknown environments strictly limits the practicality of the
embodied agents. The agent working in realistic deployment
scenarios is required to build real-time scene maps, where
feasible plans are generated with minimal exploration cost.

In this paper, we propose an EIF method for complex
tasks in the unknown environment. Different from conven-
tional methods that assume knowing interactable objects in
advance, our method navigates the unknown environment
to efficiently discover objects that are relevant to the com-
plex human requirements. Therefore, the embodied agent
can generate feasible task plans in realistic indoor scenes
where the locations and existence of objects are frequently
changing. Fig. 1 (b) also demonstrates the same example of
water serving implemented by our method, and our agent
efficiently discovers the mug and uses it as the receptacle
of water because no bottles exist in the scene. We first
construct a hierarchical EIF framework including the high-
level task planner and the low-level exploration controller
with multi-modal LLMs, which are finetuned by the large-
scale generated trajectories of the complex EIF tasks. We
then design a scene-level semantic representation map to
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Fig. 1: Comparison between conventional EIF methods and our approach in unknown environments. Existing methods fail
to complete the instruction even with long exploration cost, while our method efficiently achieves the goal with efficient
navigation and object interaction.

depict the visual clues in the known area, through which
the goals of the task planner and the exploration controller
can be aligned to feasibly complete human instructions.

More specifically, the goal of the task planner is to gener-
ate feasible plans for human instruction including navigation
and manipulation in natural language. The task planner pre-
dicts the next step based on the semantic representation map
and the task completion process. The exploration controller
aims at discovering task-related objects with low action
cost, which selects the optimal navigation policy from all
navigable borders or object interaction policy according to
the semantic representation map and the generated step-
wise plans. For the scene-level semantic feature map, we
project the CLIP features of collected RGB images during
exploration to the top-down map with dynamic region at-
tention, which preserves the task-relevant visual information
in the map without redundancy. The experimental results in
ProcTHOR [3] simulation environment show that our method
can achieve 45.09% success rate in 204 complex human
instructions in large house-level scenes.

II. RELATED WORKS

Embodied Instruction Following: The EIF task requires
the robot to follow human instructions represented by natural
language in the interactive environment. A key challenge
for the EIF task is generating interaction goals and actions
grounded in the deployment environment according to the
instructions. Prior works (e.g., LACMA [18], E.T. [12], M-
TRACK [15]) have explored end-to-end transformer archi-
tecture to generate grounded low-level interaction actions
based on the current environment perception, modular ap-
proaches (e.g., HLSM [2], FILM [10], LLM-Planner [16])
propose enhancing the generalization of unseen scenes with
hierarchical planners. However, prior arts have focused on
single-room environments, which are designed for known

environments where visual clues of the whole scene can
be easily acquired by looking around. The low scalability
of the scene scale limits their ability to discover required
visual clues in unknown environments for feasible action
generation.

Scene Representation for Visual-language Navigation:
Existing scene representations consist of three categories: 2D
semantic maps, 3D geometric maps and scene graphs. Early
works [1] constructed the 2D semantic maps by projecting
visual clues in the top-down view, which are leveraged for
navigation frontier selection for target finding. L3MVN [21]
determined the semantic relevance of the objects around each
frontier to the target by BERT [4]. To embed the geometric
information, 3D geometric maps are investigated by fusing
the structure and semantic information. ConceptFusion [7]
integrated fine-grained alignment of semantic features with
3D maps in SLAM, multi-view fusion, and NeRF [9] for
multiple downstream tasks. To reduce the storage overhead,
scene graphs [13], [20] are proposed to represent objects or
concepts as nodes and spatial relations as edges to repre-
sent the scene topology efficiently. Inspired by the above
approaches, we construct semantic feature maps to empower
embodied agents to explore unknown environments.

III. PROBLEM STATEMENT

Given the human instruction I in natural language, the
robot should generate a sequence of action primitives includ-
ing (PickUp, Place, Open, Close, ToggleOn,
ToggleOff, Slice) to complete the instruction. The
agent can only acquire the scene information for instruction
following via an RGB-D camera mounted on the agent,
through which the agents build a semantic map S to generate
the feasible interaction. In realistic deployment, the embod-
ied agent usually works in unknown environments, where the
location and existence of objects in the house-level scene are
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Fig. 2: Overview of our approach. The scene feature map is constructed based on real-time RGB-D images, which is
leveraged as visual clues for the high-level planner and the low-level controller. The planner generates the step-wise plans,
which are leveraged to predict the specific actions in the controller. The optimal border between unknown and known regions
is selected for scene exploration, and the scene feature map is updated with the visual clues seen in during the exploration.

not known. Therefore, we add an additional action primitive
(Navigation) to enable the agent to explore the scene for
visual information collection.

The agent consists of a high-level planner that reasons
step-by-step plans P = {pi}Ti=1 from human instructions
and a low-level controller that predicts the specific actions
A = {aij}

τi
j=1 for each step for scene navigation or object

interaction. T means the number of steps to achieve the
human goal, and τi is the number of special actions to
achieve the ith step in the high-level plan. The high-level
planner is represented by natural language (e.g. Step 2. Heat
the potato) given the human instruction (e.g. Can you make
breakfast for me?), and the low-level controller transfers
the step-by-step plans into executable actions with action
primitives, location and target objects (e.g. Place, potato,
(10, 8) or Navigate, frontier, (2, 3)). Finally, the agent only
manipulates the existing relevant objects to achieve human
goals.

IV. APPROACH

A. Overall Pipeline

In realistic deployment scenarios of household robots, the
physical world is usually unknown for the agent because
the existence and locations frequently change due to human
activity. Therefore, the agents are required to construct the
online scene feature map according to the real-time visual
perception during the robot navigation, through which the
agent generates feasible step-by-step plans to achieve the
human goal and the efficient exploration trajectories for the
unknown scene including navigation and object interaction to
complete each step in the plan. Fig. 2 demonstrates the over-
all pipeline of our agent. The scene feature map represents

the visual clues of the scene in the top-down view based
on the collected RGB-D images during exploration, where
the pre-trained features of regions with higher relevance to
the instruction are assigned higher importance for feature
map construction. The high-level planner generates the plans
for the next step with natural language based on the task
completion process and the semantic feature map, and the
low-level controller predicts the templated action primitives,
location and target objects for executable navigation or
manipulation based on the scene feature map and the plan
for the next step.

B. Hierarchical Agents for EIF in Unknown Environments

High-level planner: Formally, the high-level planner Ph

decomposes human instructions into step by step, generating
the plan for the next step in natural language, which con-
siders textual information including human instruction and
completed steps and the visual clues represented by semantic
feature maps.

pi = Ph(I, {pk}i−1
k=1;Si−1) (1)

where Si means the semantic feature maps updated in the
ith step.

Low-level controller: The low-level controller predicts P l

the specific actions, including action primitives, locations,
and target objects according to the high-level plans generated
and the semantic feature maps, which explore the unknown
scene and complete the stepwise plan.

{aij , lij , oij} = P l(pi, {f i
m}m; {sim}m) (2)

where lij and oij are the predicted location and target objects
for the jth actions in the ith step of the high-level plan.
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Meanwhile, f i
m means the textual features of the mth seg-

ment of the frontier between known and unknown regions
for Si, where m represents the number of frontier segments
in the entire Si. The textual features are demonstrated by
the coordinates of the middle point for the frontier seg-
ment. sim denotes the semantic features of the mth frontier
segments, which is demonstrated by the semantic feature
map patches containing the corresponding frontiers. The low-
level controller not only explores the unknown scene with
navigation and object interaction but also completes the step-
wise plans by manipulating the target object (e.g. pick up the
tomato). For action primitives except for navigate, the
predicted actions are implemented on the target objects. For
navigate, the robot just moves to the predicted locations
without object interaction.

Both high-level Ph and low-level P l are composed with
VLMs, which leverage scene semantic information to decom-
pose instructions into step-by-step plans and ground them
into executable low-level actions.

C. Online Semantic Feature Maps
The high-level planner and the low-level controller should

be aligned so that they can generate feasible plans and
exploratory actions to achieve human instructions in an
unknown environment. In realistic deployment scenarios of
household robots, the existence and locations frequently
change due to human activity. Therefore, we propose an
online semantic feature map that is dynamically updated
during the exploration of the unknown scene for each human
instruction.

Feature extraction: To enable semantic feature maps to
acquire high generalization ability in various human instruc-
tions, we use vision foundation model to extract pixelwise
visual features f ixy at time i for the pixel in xth row and
yth column of the RGB image Ci by combining the feature
of the entire image and that of the instance mask containing
the corresponding pixel. The visual features contribute to
the projected location in the scene feature map via the depth
image Di.

Fi
uv =

∑
x,y

f ixy · I(P((x, y), Di) ∈ S(u, v)) (3)

where Fi
uv means the contribution to the element in the uth

row and vth column of the semantic feature map from the
visual information collected in time i, and P demonstrates
the projected function. S(u, v) means the pixel in the uth

row and vth column in the semantic feature map, and the
indicator function I(·) equals one for true and zero otherwise.

Frontier representation: We generate frontier masks that
distinguish between known and unknown regions based
on the occupancy map for efficient exploration. Through
connected component analysis, we obtain the mask of each
frontier instance. We further remove frontiers with areas
smaller than the threshold (150 pixels) to reduce redundant
exploration. We sample 32 visual embeddings as frontier
tokens according to the frontier instance mask on the cor-
responding region of the feature map, while utilizing the
coordinates of their centroids for the frontier text description.
The specific representation is illustrated in Fig. 3 (a).

Dynamic region attention: Since the house for embodied
instruction following in realistic world is usually very large,
regarding all images with equal importance in semantic
feature map construction leads to significant information
redundancy. Meanwhile, different visual clues usually make
various contribution to the given human instruction. There-
fore, we should assign large importance to relevant visual
clues when updating the semantic feature maps with task de-
manded objects Ldec, so that sufficient visual information can
be represented without redundancy for high-level planning
and low-level exploration. Specifically, we further expand
Ldec into Ldec and Lnone to match the input requirements
of image and text alignment models such as CLIP. Ldec and
Lnone describe the image as not containing the target objects
and not containing the objects, respectively. The components
as illustrated in Fig. 3 (b), and consider the score of Ldec

as the attention score ci. Finally, the online semantic feature
map is updated with dynamic region attention:

Si
uv = (1− wi)S

i−1
uv + wiF

i
uv, wi = ci/

1

i

i∑
k=1

ck (4)

where Si
uv means the features in the ith row and jth column

of the semantic feature maps at time i. The normalized



weight wi represents the importance of the current semantic
features compared with known visual clues, where ck is the
original similarity score between the image and the prompt
in the kth time step.

D. Data Collection and Training

Data collection: The training samples for the high-level
planner consist of human instruction, current completed
plans, current semantic feature maps and the groundtruth
plan for the next step, and those for the low-level controller
include plan for the next step, textual and semantic features
for current border segments and the groundtruth action
sequences representing primitives, location and targets. We
leverage GPT-4 and the ProcTHOR simulator to generate
the large-scale dataset to train the LLaVA-based high-level
planner. We annotate several seed instructions and leverage
GPT-4 to generate more instructions and corresponding plans
based on the object list for each scene in the ProcTHOR,
where samples with logical errors are filtered with PDDL
parameters [14]. We then implement the generated plans
in ProcTHOR and collect the navigation trajectories, RGB-
D images, object locations and robot poses as the training
data. Finally, the generated samples are parsed into high-level
planning samples and low-level action data.

Training: We follow the supervised fine-tuning paradigm
in LLM for training the LLaVA model in high-level planner
and low-level controller, where we mask out pi and {aij}

τi
j=1

in the ith step. The CE loss leveraged in the training process
is represented by:

L = −E(XT ,R)∼D

[ M∑
m=1

log pθ(Rm|R<m,XV ,XT )
]

(5)

where XV denotes scene feature maps and XT means
input text prompt tokens. R<m represents the output text
tokens before the mth token Rm and M are number of
output tokens. In the training stage, we propose to construct
counterfactual samples to motivate the inference ability of
the foundation model on EIF. Specifically, we remove the
target objects in the scene descriptions from the original
samples and replace them with target objects that have
similar other properties such as usage through an artificial
mapping method.

V. EXPERIMENTS

A. Implementation Details

Training configurations: We employed the LLaVA-7B
architecture with the Vincua-1.3-7B pre-training weights for
the high-level planner and the low-level controller, which
is finetuned with our generated data by the LoRA strategy.
For the visual encoder, we sampled 32 visual embeddings
from each frontier in the semantic feature maps up to 256
tokens as scene information representation. We generated 2k
instructions with three subparts (1386 target-specific short,
333 target-specific long and 332 abstract instructions) for
2509 scenes in ProcTHOR, which results in 30k groundtruth
plans for training the high-level planner. We implemented

the plans in ProcTHOR with A∗ algorithm to collect the
expert trajectory as the groundtruth for training low-level
controller. Target-specific short and long instructions mean
those containing objects to be interacted (e.g. Place the egg in
the bowl) for task achievements, whose number of step plan
is respectively lower than 15 and not. Abstract instructions
do not contain the interacted objects in the instructions (e.g.
Make a simple lunch for me). We also generate 201, 67
and 152 data for each subpart as the test set. We utilized 8
NVIDIA 3090 GPUs to finetune the high-level planner and
the low-level controller for an hour in the training stage.

Metrics: Following the ALFRED benchmark [14], we
use success rates (SR), goal condition success (GC), path
length and their path-length-weighted (PLW) counterparts
for evaluation. SR means the ratio of the cases where the
agent completely achieve the human instructions, and GC
measures the ratio of objects in the state of goal achieve-
ments. PLWSR and PLWGC calculate SR and GC weighted
by the expert trajectory planning step number divided by
the actual execution step number, which measures the trade-
off between performance and efficiency. Path represents the
distance moved by the robot, which is utilized to measure
the efficiency of task planning.

Simulated environments: We perform extensive exper-
iments in the ProcTHOR simulators, where the step size
of translation and rotation for the agent is 0.25m and 90◦

respectively. ProcTHOR contains 10k house-level scenes
with objects from 93 categories, where the agent receives
600× 600 RGB-D images in the egocentric view. We divide
the scenes into normal-scale ([0, 10]) and large-scale ([10,
16]) ones based on the side length of the room.

B. Comparison with Baselines

Table I demonstrates the results on ProcTHOR for LLM-
Planner, FILM and our method, where our approach signifi-
cantly outperforms the state-of-the-art-method LLM-Planner.
Although LLM-Planner utilizes the rich commonsense em-
bedded in LLMs to generate plans for the agent, it fails
to align the pre-trained LLMs with the scene information.
The generated plans are usually infeasible due to the non-
existence of the objects for interaction, and the re-planning
module suffers from low success rate and low efficiency.
On the contrary, our method construct the semantic feature
maps which grounds the pre-trained multimodal LLMs to the
realistic physical scene, and the unknown environment can
be efficiently explored by understanding the visual clues for
executable plan generation. In the target-specific short task
setting, it is observed that our method outperforms LLM-
Planner and FILM by 17.41% and 39.80% success rate in
normal scale scenes, respectively. It is worth noting that
our method loses less than 2% success rate in transferring
to large-scale scenes, while LLM-Planner and FILM lose
34% and 91% success rate, respectively, which demonstrates
the excellent scalability of our method in scene scales. Our
approach remains leading in performance in more chal-
lenging target-specific long and abstract tasks. Meanwhile,
the leading PLWSR and PLWGC metrics verify that our



TABLE I: Comparison with different EIF methods across different instructions in the ProcTHOR simulator, where LLM-P∗

represents the LLM-P without performing re-planning.

Method Normal-scale Large-scale
SR PLWSR GC PLWGC Path SR PLWSR GC PLWGC Path

Target-specific Short
LLM-P∗ 27.86 23.49 41.50 35.35 25.27 17.16 11.70 33.25 22.87 65.75
LLM-P 28.36 23.62 42.33 35.57 27.47 18.63 12.64 35.21 24.63 63.47
FILM 5.97 5.97 11.17 11.17 16.55 0.49 0.49 4.84 4.84 33.68
Ours 45.77 40.75 57.88 51.14 23.29 45.09 34.41 58.21 43.13 59.11

Target-specific Long
LLM-P∗ 5.97 5.14 18.91 17.26 60.56 1.52 0.82 15.28 13.05 78.03
LLM-P 5.97 4.80 19.65 17.30 64.89 1.52 1.01 16.04 14.17 64.14
FILM 0.00 0.00 4.14 4.14 79.17 0.00 0.00 6.26 6.26 70.14
Ours 13.43 12.44 27.11 24.67 62.21 19.70 17.34 35.61 31.08 78.99

Abstract
LLM-P∗ 1.32 0.92 15.68 12.57 38.69 6.16 2.83 16.92 11.21 70.92
LLM-P 3.95 2.33 16.78 12.45 36.27 6.16 3.58 18.15 12.42 67.20
FILM 0.00 0.00 4.87 4.87 33.23 0.00 0.00 8.02 8.02 49.45
Ours 10.53 8.09 24.23 19.68 35.90 9.59 5.74 21.30 15.01 61.54

TABLE II: Ablation experimental results of exploration strategies in the task-specific short setting, where No Exp. and No
Front. represent no exploration and no frontiers exploration, respectively.

Method Normal-scale Large-scale
SR PLWSR GC PLWGC Path SR PLWSR GC PLWGC Path

No Exp. 29.85 29.09 42.08 40.92 6.09 11.27 10.68 24.26 22.99 5.32
No Front. 41.29 35.03 54.25 46.54 27.59 36.76 26.91 49.35 35.51 52.38
Ours 45.77 40.75 57.88 51.14 23.29 45.09 34.41 58.21 43.13 59.11

low-level controller can find the target object at a lower
navigation cost. Moreover, the success rate of conventional
methods (e.g., FILM) in the large-scale scenes is near zero,
while our approach can achieve 9.59% success rate. Since
the service robot is usually deployed in house-level scenes,
our method is proven to be more practical.

We demonstrate the qualitative results in Fig. 4, where
we show the step-wise plan, the exploration process and the
robot implementation during a whole sequence for EIF. In
the beginning, the agent is initialized in the bedroom area
and selects the navigation borders outside the room for ex-
ploration, as the instruction making breakfast is irrelevant to
bedrooms. During the navigation, the agent gradually knows
to explore the kitchen area by observing the dining table and
the counter, and it is even aware that opening the fridge may
find food for breakfast due to the rich commonsense in our
finetuned low-level controller. As a result, abstract instruction
is achieved by serving diverse food for breakfast, where only
related regions are navigated with high exploration efficiency
in the unknown environment. Fig. 5 illustrates the statistics of
failure cases caused by different reasons. The failure mostly
comes from unsuccessful navigation because of the large
house-level scene, and the top reasons including too close to
targets and fail to see closed space indicate that navigation
algorithms should be designed with high compatibility of the
subsequent manipulation.

C. Ablation Studies

Effectiveness of the high-level planner and the low-
level controller: We evaluated the variants of our method
where the planner and the controller are respectively replaced

TABLE III: Effectiveness of our generated plans and explo-
ration actions.

Method GT Normal-scale & target-specific short
Plan. Exp. SR PLWSR GC PLWGC Path

Ours

✓ ✓ 64.18 62.51 72.76 69.54 18.23
✓ - 49.75 47.20 60.07 56.38 21.64
- ✓ 55.72 53.20 66.67 62.71 14.70
- - 45.77 40.75 57.88 51.14 23.29

TABLE IV: Ablation study of different scene feature maps.

Method Normal-scale & target-specific short
SR PLWSR GC PLWGC Path

No Feature 36.36 29.53 45.73 38.06 16.46
No Attention 44.78 39.02 56.63 49.40 24.54
Random Attention 44.27 38.24 56.72 47.96 25.90
Ours 45.77 40.75 57.88 51.14 23.29

with the groundtruth step-wise plans and groundtruth action
sequences. It is important to note that some of the failure
causes (e.g., too close to the target) illustrated in Fig. 5 could
not be resolved even with GT step-by-step planning and
navigation goals. Table III demonstrates the results where
the performance of our methods is close to that of the
groundtruth, which indicates the effectiveness of our LLaVA-
based planner and controller. Moreover, the performance of
active exploration in low-level controller mainly influences
the success rate, since it is important to find the correct
objects to interact in unknown environments. Meanwhile,
low-level controller significantly impacts the path length
since directly exploring the related regions enables the agent
to accomplish the instruction faster.

Effectiveness of the online semantic feature map: The
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Fig. 4: An example of EIF in unknown environments. The agent only navigates the task-related regions for visual clue
collection with high efficiency, and generates feasible plans to complete the abstract instructions.
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semantic feature map provides visual information of explored
regions for the planner and the controller to generate feasible
plans and efficient actions, and we report the performance
of different semantic maps to validate the effectiveness
of our method. Table IV demonstrates the results for the
settings of semantic maps with only category information,
semantic feature maps without dynamic attention, semantic
feature maps with random attention, and our semantic feature
maps. The results demonstrate that the implicit rich semantic
features are necessary for effective exploration of unknown
environments, and the dynamic attention also enhances the
performance of the semantic feature map as it removes the
information redundancy for the large house-level scenes. We
also visualize the dynamic region attention when the agent
builds the semantic feature map in the unknown environment
as illustrated in Fig. 6. For the instruction Slice the tomato
for salad, the features of the kitchen area especially the
tomato and the sink are considered with high attention(The

TABLE V: Ablation experiment for high-level task planner.

Method Normal-scale & target-specific short
SR PLWSR GC PLWGC Path

FILM 5.97 5.97 11.17 11.17 16.55
Ours w/ BERT 24.38 18.38 39.81 29.61 20.64
Ours 45.77 40.75 57.88 51.14 23.29

TABLE VI: Ablation experiment for foundation models.

Method Normal-scale & target-specific short
SR PLWSR GC PLWGC Path

GPT-4o 30.54 19.04 43.24 27.34 20.11
Conv-LLaVA-7B 44.33 26.31 53.62 31.87 24.21
LLaMA-Adapter-7B 43.84 26.88 52.61 32.64 25.34
Ours 45.77 40.75 57.88 51.14 23.29

green color represents greater weight), which indicates that
the dynamic region attention learns relevant visual clues for
feasible action generation.

Effectiveness of active exploration: Existing EIF frame-
works often lack active exploration capabilities, making them
difficult to deploy in unknown environments. Our approach
addresses this limitation by utilizing pre-trained models to
construct fine-grained semantic feature maps and leveraging
foundation models to generate task planning and interaction
actions based on these maps. Table II demonstrates the
ablation experiments for different exploration strategies in
the target-specific short setting. In house-level unknown en-
vironments, the no-exploration strategy reduces success rates
by 15.92% and 33.82% for normal and large-scale settings,
respectively, highlighting the importance of active explo-
ration in unknown environment EIF tasks. The efficiency of
active frontier exploration is demonstrated by the fact that
the success rate of the navigation strategy without frontier
exploration is reduced by 4.48% and 8.30%, respectively,
with comparable navigation costs compared to our approach.

Influence w.r.t. high level planner: To further clarify the
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Fig. 6: visualization of dynamic region attention weights.
performance improvement of the model, we follow the FILM
setting and use BERT to recognize the target objects from the
instructions and generate high-level plans by filling the target
objects into the corresponding parsing templates according
to the predicted task categories. Table V illustrates the
results demonstrating that changing the LLaVA-7B to BERT
occurred with performance decreases, and the performance
still outperforms the FILM due to the ability of the low-level
controller to explore unknown regions to find the target.

Other foundation models: We further discuss the other
foundation models and the results are illustrated in Table
VI. GPT-4o achieved only a 30.54% success rate, signif-
icantly lower than fine-tuned foundation models. Prompt-
based grounding for downstream EIF tasks is ineffective
compared to fine-tuning foundation models, indicating syn-
thesized data requires post-processing before training.

VI. CONCLUSION

In this paper, we have proposed an EIF approach for un-
known environments, where the agent is required to explore
the environment efficiently to generate feasible action plans
with existing objects to achieve human instructions. We first
build a hierarchical EIF framework including a high-level
planner and a low-level controller, and then build a semantic
feature map with dynamic region attention to provide visual
information for the planner and the controller. Extensive
experiments demonstrate the effectiveness and efficiency of
our framework in the house-level unknown environment.
However, this work lacks real manipulation implementation
and the designed navigation policy ignores the compatibility
with manipulation. We will design mobile manipulation
strategies for general tasks and implement the closed-loop
system on real robots in the future.
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