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Abstract— Structural stability is a necessary condition for
successful construction of an assembly. However, designing
a stable assembly requires a non-trivial effort since a slight
variation in the design could significantly affect the structural
stability. To address the challenge, this paper studies the
stability of assembly structures, in particular, block stacking
assembly. The paper proposes a new optimization formulation,
which optimizes over force balancing equations, for inferring
the structural stability of 3D block stacking structures. The
proposed stability analysis is verified on hand-crafted Lego ex-
amples. The experiment results demonstrate that the proposed
method can correctly predict whether the structure is stable.
In addition, it outperforms the existing methods since it can
accurately locate the weakest parts in the design, and more
importantly, solve any given assembly structures. To further
validate the proposed method, we provide StableLego: a com-
prehensive dataset including 50k+ 3D objects with their Lego
layouts. We test the proposed stability analysis and include the
stability inference for each corresponding object in StableLego.
Our code and the dataset are available at https://github.
com/intelligent-control-lab/StableLego.

I. INTRODUCTION

Recent advancements in robotics enable intelligent robots
to perform assembly tasks, such as Lego construction [1],
[2], [3], toy insertion [4], electronic assembly [5], etc. A
good assembly design (e.g., stable) is necessary for suc-
cessful construction. However, designing assembly requires
a non-trivial effort since a slight variation could significantly
influence the task. Figure 1 showcases examples of both
valid and invalid designs. Two valid Lego designs are shown
in Fig. 1(1) and 1(4). However, tiny modifications, e.g.,
adding one brick as depicted in Fig. 1(2) and 1(5), can
cause the structures to collapse. Interestingly, the same small
adjustment can stabilize collapsing assemblies, as seen in
Fig. 1(3) and 1(6). Despite the significant impact, these
slight variations are barely perceivable to humans. Conven-
tional approaches leverage rapid prototyping techniques, e.g.,
Computer-aided Design (CAD), to iteratively improve the
design [6]. However, assembly prototyping is usually time-
consuming and the iterative process could be expensive.

In particular, this paper considers structural stability, which
is a key factor that influences the quality of an assembly
design. It is important to ensure that the assembly design is
stable so that an agent can safely perform the construction.
Specifically, this paper focuses on block stacking assembly,
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(1) 19-level Stairs. (2) Adding one level. (3) Valid 20-level Stairs.

(4) A lever with 2 pink
loads.

(5) Adding one load. (6) A valid lever with 3
pink loads.

Fig. 1: Examples of valid and invalid Lego designs. The left and right
columns are valid designs and the middle column shows collapsing designs.

where people use different blocks to build 3D structures.
We will use Lego, which is a more complex type of block
stacking assembly, to illustrate the concept. The top left
diagram of Fig. 2 illustrates the interlocking mechanism of
Lego assembly. A Lego brick is stacked on top of another to
form an assembly by inserting the knob into the cavity. The
tight fit of the insertion causes deformation, which generates
friction to hold the assembly stable. Recent works leverage
simulations to predict the structural stability of assembly
designs [7], [8], which is applicable to regular block stacking
assembly (i.e., blocks with smooth surfaces). However, to the
best of our knowledge, existing simulations are not able to
simulate the interlocking mechanism of Lego. Therefore, it is
challenging to evaluate the stability of a given Lego structure.

To address the challenge, this paper proposes a new
optimization formulation to infer the structural stability of
block stacking assembly. This formulation leverages the rigid
block equilibrium (RBE) method and optimizes over force-
balancing equations. The proposed method is tested and
verified on hand-crafted Lego examples. The experiment
results demonstrate that the proposed stability analysis can
correctly predict whether the structure is stable. In addition,
it outperforms the existing methods since it can locate the
weakest parts in the design and, more importantly, solve any
given assembly structure. To further validate our method, we
provide StableLego: a comprehensive Lego assembly dataset,
which includes a wide variety of Lego assembly designs for
real-world objects. StableLego is a novel benchmark that
could facilitate research in related areas. The dataset includes
more than 50k Lego structures built using standardized Lego
bricks with different dimensions. We apply the proposed
stability analysis to the dataset and include the stability
inferences in the dataset. To the best of our knowledge,
StableLego is the first Lego assembly dataset with stability
inferences. Our stability analysis implementation and the
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Fig. 2: Illustration of the force model of Lego assembly.

StableLego dataset are available at https://github.
com/intelligent-control-lab/StableLego.

II. RELATED WORKS

In this paper, we mainly focus on the stability of block
stacking structures [9]. The finite element method (FEM)
is widely used in analyzing complex assembly structures
[10]. However, it is usually time-consuming if accuracy is
required [11]. Due to its customizability, Lego assembly has
been recently widely studied [12], [13], [14]. Prior works
design rules to intuitively evaluate the structural stability
and improve the assembly design [15], [16], [17], [18],
[19], [20], [21]. Such rules can be, for instance, maximizing
the number of knob-to-cavity connections; minimizing the
number of bricks; and maximizing the number of brick
orientation alternations. Although these rules provide insights
into Lego structural stability, they are difficult to apply to
other block assembly tasks. Moreover, these pre-defined rules
only provide intuitive understanding instead of quantitative
measurements with physical implications. Recent works [7],
[8] leverage simulators with a physics engine to simulate
the behavior of assembly structures. However, it is difficult
to simulate the interlocking mechanism between Lego bricks
with existing simulators. Therefore, only block stacking with
smooth surfaces can be addressed. Other recent works [22],
[23] directly train a neural network to predict stability. How-
ever, such learning-based approaches require a significant
amount of data, which is non-trivial to generate.

On the other hand, the rigid block equilibrium (RBE)
method [24] formulates the stability analysis as an opti-
mization problem and solves a force distribution that sat-
isfies the static equilibrium constraints. It is widely used in
evaluating the structural stability [24], [25]. Recent works
[26], [27], [28] have utilized RBE-based techniques to eval-
uate and optimize Lego layouts. However, these existing
methods assume that the block assembly design is single-
connected. Figure 3(1) illustrates a single-connected Lego
design, whereas Fig. 3(2) depicts a design that is not single-
connected since the top three bricks do not have a con-
nected path to the ground. Existing methods would fail if

(1) (2)

A chair with a leaning base.

(3) (4)

Fig. 3: Illustrations of the single-connected assumption. (1) A single-
connected design. (2) An assembly design that is not single-connected. (3) A
3D model generated by generative AI. (4) The Lego design of the generated
structure. White: floating bricks.

the assumption is violated. Although high-quality assembly
designs usually assert single-connectivity, preliminary raw
designs, e.g., a design from generative AI, may violate this
assumption. Figure 3(3) illustrates an example 3D structure
from generative AI [29] with its corresponding prompt.
Despite the promising overall 3D shape, the corresponding
Lego design could be imperfect as shown in Fig. 3(4) since it
contains floating bricks (i.e., the white bricks). Such a design
violates the single-connected assumption and is not solvable
by existing methods.

III. STABILITY ANALYSIS
OF BLOCK STACKING STRUCTURES

Following the idea of RBE, this paper formulates the
stability analysis as an optimization problem and solves
a force distribution by optimizing over force balancing
equations. Unlike the prior works, the key difference is that
our formulation encodes the static equilibrium conditions in
the objective function while imposing additional physical
constraints on the optimization. Similar to existing RBE
methods, we assume all assembly components (i.e., Lego
bricks) are rigid bodies, and factors (e.g., material, tempera-
ture, etc) will only influence the friction capacity T in (6). In
addition, we assume all connections between bricks are well-
established, i.e., all cavities and knobs are snapped together
for all connections. The proposed formulation can be easily
reduced to regular block stacking assembly.

A. Force Model

Figure 2 illustrates the force model in our stability anal-
ysis, which is adopted from Luo et al. [26]. The middle
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diagram of Fig. 2 depicts the potential forces exerted on
a single Lego brick in an assembly. Given an assembly
consisting of N bricks, we denote a brick as Bi, where
i ∈ [1, N ]. For any Bi, it has the gravity G⃗i = mig⃗ applying
on it, where mi is the brick mass and g⃗ ≈ 9.8 N/kg. If there
is a connection to the top knob, Bi will experience pressing
force P⃗i (i.e., the blue arrow) pointing downward due to the
weight of the structures above it, as well as pulling force
U⃗i (i.e., the red arrow) pointing upward due to the tight
connection of the knob. Similarly, if there is a connection
to the bottom cavity, Bi will experience supporting force
S⃗i (i.e., the purple arrow) pointing upward due to the rigid
structure below it, as well as dragging force D⃗i (i.e., the
green arrow) pointing downward due to the friction from the
connection. If there are bricks right next to Bi, there will
also be horizontal press H⃗i (i.e., the yellow arrows) pointing
toward Bi. If a knob or a cavity of Bi is connected, there will
be horizontal press K⃗i within the knob (i.e., the cyan arrows)
pointing in horizontal directions that prevent the brick from
sliding. Note that each connection will generate 4 horizontal
press force components in the 4 horizontal directions, i.e.,
±X and ±Y , pointing inward to Bi. Also, note that only
G⃗i is a force constantly exerting on Bi independent of the
assembly structure. S⃗i, P⃗i, D⃗i, U⃗i, H⃗i, K⃗i are forces that may
or may not exist depending on the structure. In the following
discussion, we refer to these forces as candidate forces.

The middle and bottom figures on the left of Fig. 2
illustrate different connections of bricks. Depending on the
different dimensions of the top bricks, there are different
numbers of contacting points that generate friction to hold the
knobs of the bottom bricks. If the top brick is 1×X , where
X ∈ N, X ≥ 1, each connected knob has 4 contact points.
If the top brick is 2×X , X ≥ 2, each connected knob has
3 contact points. If the top brick is Q×X , Q ≥ 3, X ≥ Q,
the connections on the edge have 3 contact points while
others have 4 contact points. In our formulation, instead of
summing up the candidate forces and assuming only one
vertical candidate for each of the S⃗i, P⃗i, D⃗i, U⃗i within each
knob-to-cavity connection, we assume the vertical candidate
forces exist at each of the contact points.

The right figure in Fig. 2 illustrates the force models for
each brick in an example Lego structure. The white contours
indicate the connected knobs for each brick. If there is no
connection, either on top or below a knob, there are no
candidate forces exist. The bottom of the diagram lists all
the potential forces that are exerted on the brick. All bricks
have gravity applied to them. For B1, since only the right-
most knob has a 1 × 2 brick connected on top of it, it has
4 pressing candidates P⃗1 = {P⃗ 1

1 , P⃗
2
1 , P⃗

3
1 , P⃗

4
1 } and 4 pulling

candidates U⃗1 = {U⃗1
1 , U⃗

2
1 , U⃗

3
1 , U⃗

4
1 } since the connection has

4 contact points. And there exist 4 knob pressing candidates
K⃗1 = {K⃗1

1 , K⃗
2
1 , K⃗

3
1 , K⃗

4
1} in 4 horizontal directions. Since

there exists a brick (i.e., B3) right next to it, it has a
horizontal press candidate H⃗1 = {H⃗1

1}. Similarly for B2,
since there are only connections below it, there is no U⃗2 or
P⃗2. Due to the cavity connections, there are 8 supporting
candidates S⃗2 = {S⃗j

2 | j ∈ [1, 8]} since each cavity has

4 contact points. Similarly there are 8 dragging candidates
D⃗2 = {D⃗j

2 | j ∈ [1, 8]} and 8 knob pressing candidates
K⃗2 = {K⃗j

2 | j ∈ [1, 8]}. Since there is no brick right next to
B2, H⃗2 does not exist. We can derive the force models for
B3 and B4 following the similar rules as listed in Fig. 2.

B. Static Equilibrium

An object reaching static equilibrium indicates that it will
not fall or collapse. To ensure a stable Lego structure, we
need to ensure that each brick Bi can reach static equilibrium
so that the structure will not collapse. For a given Lego
structure with N bricks and each candidate force Fi has
MFi candidates, the static equilibrium enforces that ∀Bi, i ∈
[1, N ], we need to satisfy

Cf
i =̇ G⃗i +

MFi∑
j=1

F⃗ j
i = 0⃗, (1)

Cτ
i =̇ L⃗G⃗i

i × G⃗i +

MFi∑
j=1

(L⃗
F⃗ j

i
i × F⃗ j

i ) = 0⃗, (2)

F⃗ j
i ∈ Fi = {S⃗jS

i , P⃗ jP
i , D⃗jD

i , U⃗ jU
i , H⃗jH

i , K⃗jK
i |

jS ∈ [1,MSi ], jP ∈ [1,MPi ], jD ∈ [1,MDi ]

jU ∈ [1,MUi ], jH ∈ [1,MHi ], jK ∈ [1,MKi ]},

where × denotes the vector cross-product operation. L⃗F⃗
i is

the force lever of the force vector F⃗ on brick Bi. Equation (1)
enforces that Bi reaches force equilibrium so that the brick
would not have translational motion. Equation (2) enforces
that Bi reaches torque equilibrium (also referred as moment
equilibrium). This indicates that the brick would not have
rotational motion. Satisfying both (1) and (2) indicates that
the bricks are static and the structure is stable.

C. Constraints

a) Non-negativity: We assume all components are rigid
bodies. Therefore, the value of each force should be non-
negative. Let the value of F⃗ j

i ∈ Fi be F j
i , we have

C+
i : F j

i ≥ 0. (3)

b) Non-coexistence: At any given contact point, the
pulling force U⃗ j

i and the pressing force P⃗ j
i cannot coexist.

If U j
i > 0, the top brick is pulling the bottom brick upward.

Then there is no weight loaded on the bottom brick, and
thus, P j

i = 0. If P j
i > 0, then there is weight loaded on the

bottom brick. Therefore, the top brick cannot be pulling the
bottom brick upward. Similarly, the dragging force D⃗j

i and
the supporting force S⃗j

i cannot coexist. The non-coexistence
property gives the constraint as

C
||
i :

{
P j
i · U j

i = 0

Dj
i · S

j
i = 0

. (4)

c) Equality: Newton’s third law states that for every
action, there is an equal and opposite reaction. At a given
contact point q, let the bottom brick be Bi and the upper
brick be Bj . The supporting force S⃗q

j and the pressing force



P⃗ q
i are such an action-reaction pair. Similarly, the pulling

force U⃗q
i and the dragging force D⃗q

j are also an action-
reaction pair. Also, the knob pressing candidates K⃗i and K⃗j

are also action-reaction pairs. Let Bk be a brick adjacent to
Bi, then the horizontal press H⃗i and H⃗k are also an action-
reaction pairs. Therefore, we have the equality constraints
as

C= :


Sq
j = P q

i

Uq
i = Dq

j

Hi = Hk

Ki = Kj .

(5)

d) Friction Capacity: As shown in the left diagram of
Fig. 2, Lego bricks are held together due to the static friction
(i.e., U and D) at the contact points caused by deformation.
The structure is stable if the friction is within the limit. In
our analysis, we assume all deformations are identical and
all frictions share the same limit T . A structure is stable if
all friction forces do not exceed the limit. Thus, we have the
capacity constraint as

CT
i :

{
0 ≤ U jU

i ≤ T, ∀jU ∈ [1,MUi
]

0 ≤ DjD
i ≤ T, ∀jD ∈ [1,MDi

]
, ∀i ∈ [1, N ].

(6)

D. Stability Analysis Formulation

Following the intuition in RBE [26], a given structure is
stable if there exists a set of forces F that satisfies (1) to (6).
We can use the force distribution to estimate the stability of
the structure. To solve F, we formulate the optimization as

argmin
F

N∑
i=1

{
|Cf

i |+ |Cτ
i |+ αDmax

i + β

MDi∑
j=1

Dj
i

}
,

subject to:


C+

i

C
||
i

C=

,∀i ∈ [1, N ].

(7)

where Dmax
i = maxj D

j
i is the maximum dragging force

for a brick Bi. The objective function minimizes the static
equilibrium values in (1) and (2) as well as the maximum
friction and the total friction in each brick. The terms |Cf

i |
and |Cτ

i | encourage the solver to solve a distribution of F
that makes the structure to reach static equilibrium. Dmax

i

tries to avoid extreme values among the dragging forces in
Bi. And

∑MDi
j=1 Dj

i encourages the solver to solve F with
minimum internal friction. α and β are tunable weights
to adjust the influence of the two terms so that they do
not take over the effect of the static equilibrium. Note that
the key difference between (7) and previous works is that
instead of imposing static equilibrium (1) and (2) as equality
constraints, we encode them in the objective function. This
is critical since enforcing them as constraints is essentially
assuming there exists a F that satisfies the static equilibrium.
If a given structure does not have such a F, the formulation is
voided. An example could be a structure with floating bricks.
Including them in the objective function instead of as hard

Dimension 1× 1 1× 2 1× 4 1× 6
Mass (g) 0.43 0.81 1.57 2.28

Dimension 1× 8 2× 2 2× 4 2× 6
Mass (g) 3.03 1.15 2.16 3.23

TABLE I: The masses of different Lego bricks with different dimensions.
Highlighted bricks are the ones used in the experiment.

constraints can relax the single-connected assumption and
solve the stability of any structures. Aside from the objective
function, (7) also imposes more equality constraints (i.e.,
(4) and (5)) than prior works to improve the accuracy of
predicted stability.

Given the solved F, the stability of each brick Bi is
estimated as

Vi =

{
1 ¬Cf

i ∧ ¬Cτ
i ∧ ¬CT

i

1− ⌈T−Dmax
i ⌉

T Otherwise
(8)

The structure is stable if all bricks are stable, i.e., 0 ≤ Vi <
1,∀i ∈ [1, N ]. It is worth noting that the friction capacity
(6) is not imposed as a constraint in (7). Instead, we add
the friction terms in the objective function to minimize the
solved internal friction. And use (6) in (8) to determine the
structural stability.

IV. EXPERIMENTS

Our experiment considers standard Lego bricks, i.e., rect-
angular bricks with solid colors and a height of 9.6mm.
Bricks with dimension Q×X are uncommon on the market,
and thus, we mainly consider 1 × X and 2 × X bricks.
Table I shows the masses for each brick. To avoid uncertainty
in manufacturing, each brick’s mass is measured using the
average of 10 bricks. We use bricks that are highlighted in
table I since they are most commonly used. Our stability
analysis is implemented using Python and Gurobi [30].
We have T = 0.98N, α = 10−3 and β = 10−6. Our
implementation is available at https://github.com/
intelligent-control-lab/StableLego. All re-
sults are generated on an Intel i7-13700HX with 32GB RAM.

A. Stability Analysis Accuracy

We implement Luo et al. [26] as our baseline. However,
the original formulation in [26] only considers (1) to (3)
and (6). Thus, we implement an enhanced version of [26]
as the enhanced baseline (EB) by integrating (4) and (5).
We first evaluate our stability analysis algorithm on several
hand-crafted Lego structures as shown in Fig. 1. Figure 4
illustrates the comparisons between our analysis results (i.e.,
the top row) and the EB’s prediction (i.e., the bottom row).
We do not include the predictions from the original baseline
because it fails to distinguish the structures and predicts that
all six structures are stable.

Figures 4(1) and 4(7) correspond to the structure in
Fig. 1(1). The structure can be built in real, and both methods
indicate that the structure is stable. However, our method
indicates higher internal stress at lower levels, whereas the
EB cannot distinguish the stresses at different levels. The
structure in Fig. 1(2) collapses, and both methods indicate
that the structure is unstable. However, ours accurately
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(1) Ours Fig. 1(1) (2) Ours Fig. 1(2) (3) Ours Fig. 1(3) (4) Ours Fig. 1(4) (5) Ours Fig. 1(5) (6) Ours Fig. 1(6)

(7) EB Fig. 1(1) (8) EB Fig. 1(2) (9) EB Fig. 1(3) (10) EB Fig. 1(4) (11) EB Fig. 1(5) (12) EB Fig. 1(6)

Fig. 4: Comparison of the proposed stability analysis (i.e., first row) and the EB (i.e., second row). The analysis results from left to right correspond to
the structures shown in Fig. 1(1) to 1(6). Black: bricks with less internal stress; Red: bricks experiencing higher stress; White: collapsing bricks.

predicts the collapsing point (i.e., the white brick in Fig. 4(2))
while the EB cannot as shown in Fig. 4(8). To observe the
actual collapsing point, we hold the structure before it is
finished so it does not collapse during construction. After all
connections are established, we remove the external support
and observe the collapsing point. As shown in Fig. 1(2),
the structure collapses at the predicted location. Similar
results are shown in Fig. 4(3) to 4(6) and 4(9) to 4(12),
which correspond to the structures in Fig. 1(3) to 1(6).
We can see that even though both methods can estimate
structural stability, ours gives a more precise estimation,
which generates more realistic internal stress distributions
and predicts the weakest connection points.

B. StableLego Dataset
A large-scale dataset is essential for benchmarking vari-

ous assembly tasks. However, it is time-consuming, if not
impossible, to design a large number of different Lego
objects manually. To this end, we present StableLego, a
comprehensive dataset that provides artificially generated
Lego brick layouts for a wide variety of different 3D objects.
StableLego is developed based on the ShapeNetCore dataset
[31]. It includes more than 50k of different objects from
55 common object categories with their Lego layouts. For
each object, we downsample the original 3D object to a
20× 20× 20 grid world and generate a corresponding brick
layout. In particular, we merge unit voxels (i.e., 1× 1) into
larger bricks and prioritize merging voxels that have no
support under them. The dataset contains a mix of simple
and complex structures, in which the simple ones have less
than 5 bricks, whereas the complex ones can include up to
more than 1100 bricks. Note that the focus of this dataset
is not providing optimal brick layouts. Thus, the dataset
contains a mix of valid and invalid brick layouts for testing
the stability analysis accuracy. The dataset could be used to
inspire creativity in building Lego objects. More importantly,
it provides a novel benchmarking platform for verifying
the performance of structure stability algorithms as well as
facilitating research in related areas. We include the stability
estimation using the proposed formulation for each Lego
structure. Prior work [32] provides a Lego assembly dataset
with over 150 designs generated from video input. To the
best of our knowledge, StableLego is the first large-scale
Lego assembly dataset with stability inferences.

Baseline [26] Enhanced baseline Ours
Solvable Count 128 116 225

Solvability 57.92% 51.56% 100%
False Count 12 1 1

Stability Accuracy 90.63% 99.14% 99.56%

TABLE II: Stability analysis results on a subset of StableLego dataset,
i.e., 225 Lego objects.

Figure 5 illustrates the stability analysis results of our
method on example valid designs in StableLego. The top
row shows the original object, and the middle row depicts
the stability analysis of the given Lego brick layout. The third
row shows the Lego structure built in real following the given
brick layout. We can see that our method correctly predicts
that all structures are stable. Figure 6 shows examples of
invalid Lego designs. Our method correctly indicates that
the structures will collapse (i.e., the middle row). In addition,
the structures collapse at the predicted collapsing points as
shown in the third row.

We use StableLego to conduct a thorough comparison
between our proposed method and the baselines. Due to
the large scale of StableLego (i.e., 50k+ objects), it is
practically impossible to physically build and verify each
of them. Thus, we randomly sampled a subset (i.e., 225
objects) and physically build each of them to verify the
stability analysis result. Table II demonstrates the numerical
comparison between our method and the baselines. First, we
compare the solvability of each method. Given a structure,
it is solvable if the algorithm can give a solution. We can
see our method achieves 100% solvability, which means it
successfully generates predictions for all of the 225 objects.
However, the baseline can only solve 57.92% of the test
set since it imposes the equilibrium conditions (i.e., (1)
and (2)) as constraints. Similarly, the EB can solve 51.56%
of the test set, which is even lower due to the additional
constraints (i.e., (4) and (5)). When applying the analysis
methods to the entire StableLego, the baselines can only
solve approximately 33% (i.e., ∼17k) of the entire dataset,
while our proposed method can solve all of them. Second, we
analyze the accuracy of each stability analysis algorithm. The
stability accuracy is defined as Ns−Nf

Ns
. Nf is the number of

incorrect predictions, i.e., false count, and Ns is the number
of solvable samples, i.e., solvable count. We can see that
our method achieves the highest prediction accuracy. It only
has one false prediction out of 225 solvable structures. The
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Fig. 5: Example valid designs in the StableLEGO dataset.
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Fig. 6: Example invalid designs in the StableLEGO dataset.

(1) Lego structure. (2) Our analysis. (3) EB’s analysis.

Fig. 7: The false prediction from ours and EB in table II.

false example is shown in Fig. 7, in which our method
predicts that the structure will collapse (i.e., Fig. 7(2)) but
turns out to be stable (i.e., Fig. 7(1)). This might be due
to the model mismatch since the force model (i.e., Fig. 2)
is a simplified approximation of the real-world model. By
imposing additional constraints, the EB also only has one
false prediction, which is the identical one in our method
(i.e., Fig. 7(3)). However, by comparing Fig. 7(2) and 7(3),
our method gives a more realistic force distribution. On
the other hand, the baseline has significantly more incorrect
predictions, and thus, has the lowest stability accuracy. Due
to the lack of constraints, it incorrectly predicts unstable
structures to be stable.

C. Stability Analysis Computation Time

It is desired that the stability can be efficiently estimated.
For the structures in Fig. 1, on average, the analysis results
shown in Fig. 4 are solved within 0.1s overall by our method
(i.e., constructing the optimization problem (7) and then
solving it), and 0.01s if we only count the time for solving
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Fig. 8: Computation time for the stability analysis. Blue: 50 percentile.
Yellow: 75 percentile. Red: 25 percentile. Dashed: overall time. Solid: time
for solving (7).

(7). To quantitatively evaluate the computation efficiency, we
test our stability analysis in a controlled setting. In particular,
we use unit Lego bricks (i.e., 1 × 1) to build cuboids with
different dimensions up to 10 × 10 × 10. The top figure in
Fig. 8 shows the computation time for solving the structural
stability with different numbers of bricks. We can see that our
method is efficient since it can estimate the stability within
1s, and mostly even within 0.5s. The overall computation
time (i.e., the dashed lines) is less than 1.5s, and mostly
within 1s. As the size of the structure grows, it contains
more bricks and takes longer to estimate the stability. To
further evaluate the computation efficiency, we show the
computation time of solving the stability of StableLego in
the bottom figure of Fig. 8. In general, it takes longer time
for the structures in StableLego since it contains a wider
variety of Lego bricks and the structures are more complex.
However, our method is still able to solve efficiently. When
having less than 300 bricks, our method can solve within 1s.
As the number of bricks grows, the complexity increases, and
it takes a longer time. But we can still expect it to estimate
the stability within several seconds.

D. Extension

Our experiment only uses the highlighted bricks in table I,
but the proposed stability analysis formulation applies to
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Fig. 9: Stability analysis for regular block stacking. The top row illustrates
the stability analysis results corresponding to the structures shown in the
bottom row respectively. Black: stable bricks. Red: collapsing bricks.

other bricks as well. Moreover, the proposed method is
applicable to other real-world applications.

a) Block stacking: The proposed formulation can be
easily extended to regular block stacking assembly, in which
the bricks have smooth surfaces as shown in Fig. 9. We use
the identical force model as shown in Fig. 2 except for re-
moving the frictions from the Lego interlocking mechanism.
In Fig. 9(7), the offset between the bottom and middle bricks
is larger than the offset between the middle and top bricks.
Our method predicts that the structure is stable as shown in
Fig. 9(1), and it is indeed stable when built in real as shown
in Fig. 9(7). However, when the top brick is pushed to the
right as shown in Fig. 9(8), the structure collapses. Note
that the vertical brick on the right is only for the purpose of
photo shooting. Despite the slight change in the assembly,
our stability analysis can reliably indicate that the structure
will collapse as shown in Fig. 9(2). When we decrease the
offset between adjacent bricks, we can build a structure with
8 levels as shown in Fig. 9(9) and our algorithm also predicts
that the structure is stable as shown in Fig. 9(3). However,
when the second from the bottom brick is moved slightly to
the right while all the other offsets between bricks remain the
same, the stability analysis indicates that the structure will
collapse as shown in Fig. 9(4) due to the slight modification.
And Fig. 9(10) shows that the structure collapses as expected.
To bring the collapsing structure back to stable, our stability
analysis indicates that we can just move the top brick to the
left as shown in Fig. 9(5). When we build the corresponding
structure, it is stable without the need of external support
as shown in Fig. 9(11). Figures 9(6) and 9(12) illustrate a
random complex example with more bricks and orientations,
which demonstrates that our method is applicable to regular
block stacking assembly.

b) Stacking with arbitrary orientation: The proposed
method can be applied to structures with arbitrarily oriented
blocks. Figures 10(1) to 10(4) demonstrate applying our
method to Lego structures with arbitrary orientations, in
which bricks are only connected by one knob. Figure 10(2)
correctly predicts that the structure in Fig. 10(1) collapses at
the predicted position, i.e., the white brick in Fig. 10(2). By
adding two 1× 2 bricks under the 2× 6 brick, the structure
in Fig. 10(3) becomes stable, which is also indicated in our
analysis as shown in Fig. 10(4). Besides Lego, we also apply
our stability analysis to regular blocks with arbitrary orien-
tations. The upper block in Fig. 10(5) has an approximately
45◦ angle between the bottom brick. Thus, it collapses

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 10: Stability analysis with arbitrary block orientations. Black: stable
bricks. Red/White: collapsing bricks.

as the stability analysis predicts as shown in Fig. 10(6).
When a block is added above the collapsing block, our
analysis indicates that the structure will be stable as shown in
Fig. 10(8). The assembled structure is indeed stable as shown
in Fig. 10(7). Therefore, we can see the proposed method is
capable of solving structures with arbitrary orientation.

c) External weight: The proposed stability analysis can
also be extended to account for external forces by specifying
large weights for specific bricks. Figure 11 illustrates exam-
ples of accounting for external loads. A 200g weight is put on
the Lego stairs. In the stability analysis, we use a 2×2 brick
with 200g to approximate the weight. Our method indicates
that a 3-level stair can support the weight (Fig. 11(2)) while
a 4-level stair cannot (Fig. 11(4)). Figures 11(1) and 11(3)
demonstrate the corresponding stable and unstable structures
in real. And the unstable structure indeed breaks at the
predicted weakest point, i.e., the white brick in Fig. 11(4).

d) Palletization: Package palletization is an important
application in manufacturing [23]. Figure 12 illustrates that
the proposed stability analysis can be applied to predict
whether the pallets are stable. Figures 12(1) and 12(2)
demonstrate a stable pallet of package boxes. When slightly
moving the top package to the left, the pallet will collapse as
shown in Fig. 12(3) and 12(4). We add blocks to support the
collapsing package box for the purpose of photo shooting.
Therefore, the proposed method can be deployed to real-
world applications such as palletization and manufacturing.

E. Discussion

There are several limitations to the proposed method. First,
the current implementation only considers cubic blocks,
while the proposed formulation is generalizable to generic
components. Thus, we aim to improve the implementation
by considering assembly components with more generic
shapes. Second, the current framework requires the user to
provide the assembly configuration, which is time-consuming
and prone to error. In the future, we aim to enable the
robot to inspect the structure and auto-generate the assembly
configuration so that the analysis process can be automated.

Despite the limitations, there are numerous future direc-
tions that we can pursue. Accounting for external forces can
be helpful when planning dual-arm Lego assembly using
the manipulation strategy in [1]. The stability analysis can
indicate whether and where a supporting arm is needed.
In addition, we can use our approach to efficiently guide
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Fig. 11: Stability analysis with external loads. Black: less internal stress.
Red: higher internal stress. White: collapsing bricks.
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Fig. 12: Stability analysis for package palletization. Black: stable bricks.
Red: collapsing bricks.

generative AI (as shown in Fig. 3(3) and 3(4)) to improve
the imperfect design. Moreover, we aim to integrate dynamic
forces into the optimization, which enables the robot to
understand the impact of its action to the world and poten-
tially outperform in complex manipulation tasks, e.g., Jenga
extraction [33].

V. CONCLUSION

This paper studies the structural stability of block stack-
ing structures. In particular, this paper leverages the RBE
method and proposes a new optimization formulation, which
optimizes over force balancing equations, for inferring the
stability of 3D structures. To benchmark the performance,
we provide StableLego: a dataset of 3D objects with their
Lego layouts and the corresponding stability inferences. The
dataset includes a wide variety of assembly configurations
(i.e., more than 50k structures) using standardized Lego
bricks. The proposed formulation is verified using 1) hand-
crafted Lego designs, 2) the StableLego dataset, and 3)
regular building blocks.
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