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Figure 1. We propose a general framework for online 3D scene perception. With the presented memory-based adapters, we empower
existing offline models in different tasks with online perception ability, which is valuable for robotics applications.

Abstract

In this paper, we propose a new framework for online 3D
scene perception. Conventional 3D scene perception meth-
ods are offline, i.e., take an already reconstructed 3D scene
geometry as input, which is not applicable in robotic ap-
plications where the input data is streaming RGB-D videos
rather than a complete 3D scene reconstructed from pre-
collected RGB-D videos. To deal with online 3D scene per-
ception tasks where data collection and perception should
be performed simultaneously, the model should be able to
process 3D scenes frame by frame and make use of the
temporal information. To this end, we propose an adapter-
based plug-and-play module for the backbone of 3D scene
perception model, which constructs memory to cache and
aggregate the extracted RGB-D features to empower offline
models with temporal learning ability. Specifically, we pro-
pose a queued memory mechanism to cache the supporting
point cloud and image features. Then we devise aggregation
modules which directly perform on the memory and pass
temporal information to current frame. We further propose
3D-to-2D adapter to enhance image features with strong
global context. Our adapters can be easily inserted into
mainstream offline architectures of different tasks and sig-
nificantly boost their performance on online tasks. Exten-
sive experiments on ScanNet and SceneNN datasets demon-

*Equal contribution. †Corresponding author.

strate our approach achieves leading performance on three
3D scene perception tasks compared with state-of-the-art
online methods by simply finetuning existing offline models,
without any model and task-specific designs. Project page.

1. Introduction
3D scene perception aims to parse a 3D scene into semantic
or object-level entities, mainly including semantic segmen-
tation, object detection and instance segmentation, which is
the fundamental ability for robotics or AR/VR applications.
Since PointNet [32] proposes the first model that directly
process point clouds, great improvement on 3D scene per-
ception [6, 38, 40, 42, 43] has been achieved in recent years
by accurate and efficient architecture design.

However, conventional 3D scene perception methods are
offline, i.e., they take an already reconstructed 3D scene ge-
ometry from pre-collected RGB-D videos without tempo-
ral information as input. While in most robotic application
such as navigation [4, 47] and manipulation [25] where the
agent is usually initialized in an unknown environment, the
input data is streaming RGB-D videos and scene percep-
tion should be performed synchronously with data collec-
tion to guide the agent how to explore. Therefore, online 3D
scene perception model with temporal modeling ability is
required, which takes in streaming RGB-D video and con-
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tinuously outputs the perception of the currently observed
3D scene. There are also a few online 3D scene perception
methods [16, 22, 24, 26, 46] designed for special architec-
ture and task. As these methods only focus on temporal
aggregation for single modality, they cannot fully exploit
temporal relations between image and point cloud features
and thus their performances are not satisfactory.

In this paper, we propose a new general framework for
online 3D scene perception. Different from previous works
which design online perception approachs based on spe-
cific architecture and task and train models on RGB-D
videos from scratch, we convert exsiting offline 3D per-
ception models to online ones by simply inserting plug-
and-play modules and finetuning. Taking inspiration from
adapters [5, 29] which adapt image backbones to down-
stream tasks by additional parameter tuning, we propose
memory-based adapters to empower the backbone of 3D
perception model with temporal modeling ability by reusing
the extracted features from previous frames. Specifically,
we propose a queued memory mechanism to cache the
supporting point cloud and image features for the RGB-D
frame at current time. Based on the structure of memory, we
devise aggregation modules which directly operate on the
memory and pass temporal information to current frame. As
the global context of image features is limited, we further
propose 3D-to-2D adapter to enhance image features with
3D memory projection and 2D sparse aggregation. In this
way, we can make use of the existing mainstream 3D scene
perception model zoo to acquire a series of online models,
with simple inserting and finetuning. We conduct extensive
experiments on three online perception tasks on ScanNet [7]
and SceneNN [15] datasets. Our approach achieves leading
performance on all tasks and datasets without any additional
loss function and special prediction fusion strategy. To sum-
marize, our contributions include:
• We propose a new framework for online 3D scene percep-

tion, which extends existing offline models to online ones
by adapter without model and task-specific design.

• We propose general memory-based adapters for image
and point cloud backbones, which cache and aggregate
extracted features to model the temporal relations be-
tween frames.

• Equipped with our adapters, offline models are able to
achieve leading performance on three tasks compared
with state-of-the-art online models.

2. Related Work
3D Scene Perception: 3D scene perception is widely stud-
ied in computer vision, which can be divided into three
mainstream tasks: semantic segmentation [6, 11, 32, 33],
object detection [13, 34, 38, 43] and instance segmenta-
tion [17, 18, 40, 42, 45]. As we focus on the feature ex-
traction of 3D scene in this work, we mainly discuss the

backbone of 3D scene perception networks. Due to the un-
ordered property of point cloud data, voxelizing the points
and applying convolution on 3D grids is a natural solu-
tion [3, 31]. However, the computational cost and mem-
ory requirement both increase cubically with voxel resolu-
tion, which is inefficient. PointNet [32] is the pioneer work
which directly extracts feature representations from raw
point clouds. PointNet++ proposes set abstraction and fea-
ture propagation operation based on PointNet, which helps
learning more detailed local geometric information. As
the furthest point sampling operation in PointNet++ is time
consuming, PV-CNN [23] converts point clouds to low-
resolution voxels and apply 3D convolution to efficiently
aggregate local features. Another way to extract high-
quality 3D features is sparse convolution [9, 10], which
voxelizes the point clouds but only apply 3D convolution
on non-empty voxels. To further improve the efficiency of
sparse CNNs, submanifold sparse convolution [6, 11] is in-
troduced, which only conducts convolution when the center
of kernel slides over active sites and keeps the same level of
sparsity throughout the network. However, these methods
are designed for offline 3D scene perception, which is not
able to process a streaming RGB-D video at real time.

Streaming Data Analysis: As the input for online 3D
scene perception model is streaming RGB-D video, we re-
view the streaming data analysis methods for both image
and point cloud domains. In 2D vision, many works [2,
8, 19] extend causal convolution [28] to streaming videos,
where a stream buffer is devised to cache previous frames
and 3D causal convolution is applied to unidirectionally ag-
gregate spatial-temporal information. TSM [20] utilizes a
more efficient shift mechanism, where a proportion of chan-
nels of previous image features are shifted to the next frame.
Then the spatial-temporal information can be efficiently ag-
gregated by 2D convolution. Our image adapter also utilizes
channel shift for efficient temporal modeling. Differently,
TSM is trained from scratch where the network can learn
how to model temporal information according to the shift
proportion. While we reorganize the channels and adopt
channel shift in a plug-and-play adapter to empower im-
age backbone with temporal modeling ability. However,
as 2D streaming videos contain less helpful information
for real world applications like robotic navigation [4, 47]
and manipulation [25], increasing attention has been paid
to 3D streaming RGB-D video analysis. A natural solu-
tion is to first process 2D images and then project the pre-
dictions to 3D point clouds, which is followed by a fusion
step to merge the predictions from different frames [24, 26].
Fusion-aware 3D-Conv [46] and SVCNN [16] maintain the
information of previous frames in 3D space and conduct
point-based convolution to fuse the 3D features for semantic
segmentation. INS-CONV [22] extends sparse convolution
to incremental CNN to efficiently extract global 3D features
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Figure 2. Overall architecture of our approach. We insert memory-based adapters after image and point cloud backbones, which cache the
extracted features in memory over time and perform temporal aggregation. 3D-to-2D adapter is proposed to further exploit inter-modal
temporal information. Solid lines indicate operations within a single frame, while dashed lines indicate temporal operations.

for semantic and instance segmentation. Differently, our
approach empowers offline model with online perception
ability by image and point cloud memory-based adapters,
which fully exploits the multimodal temporal relations.

3. Approach
In this section, we first introduce the definition of online 3D
scene perception and explain our motivation of memory-
based adapter. Then we describe how to construct memory
and refine the backbone features by adapter for point cloud
and image respectively.

3.1. Online 3D Scene Perception

Let Xt = {x1, x2, ..., xt} be a posed RGB-D streaming
video, which means the video is collected with the moving
of sensor rather than a pre-collected video. We have:

xt = (It, Pt,Mt), It ∈ RH×W×3, Pt ∈ RN×3, Mt ∈ R3×4

(1)
where It and Pt refer to the image and point clouds for one
RGB-D frame. Pt is acquired by lifting the depth image to
world coordinate system with pose parameters Mt, where
Mt can be estimated by visual odometry [30, 48]. At time
t, the input to online perception model is Xt and the out-
put is predictions for the observed 3D scene St =

⋃t
i=1 Pi,

which can be bounding boxes and semantic/instance masks.
Some works also perform 3D reconstruction along with on-
line perception [22] to acquire high-quality point clouds or
meshes, but this is not required [4, 35, 47]. In this work we
do not rely on 3D reconstruction and directly take RGB-D
streaming video as input, which is a more general setting.

Although great improvement has been achieved in the

design of 3D perception models, most of them only fo-
cus on two scenarios: (1) Reconstructed scenes [1, 7].
The model MRec is trained on point clouds of complete
scenes reconstructed from RGB-D videos. (2) Single-view
scenes [27, 41]. The model MSV is trained on single-view
point clouds back-projected from RGB-D image. However,
MRec requires the input to be a complete scene, which is
not accessible in real-time tasks. MSV is able to process
RGB-D videos frame-by-frame, but fails to exploit temporal
information. Therefore, previous 3D models are not ready
for the more practical online scene perception.

To this end, we aim to devise a plug-and-play temporal
learning module, which can be inserted into any single-view
perception model MSV and empowers it with temporal
modeling ability. Note that MSV is originally a 3D percep-
tion model. We can extend it to a RGB-D perception model
by early fusing the image features to point clouds [39]:

pt = MSV (P
′
t ),

P ′
t = Pt ⊕ S(MI(It), Pt,Mt), S(·) ∈ RN×C (2)

where pt is the prediction for input frame at time t. MI is
a image backbone pretrained on the same perception task
as MSV . S projects Pt to image coordinate system by
Mt and samples the corresponding 2D features to enrich
the features of Pt. We divide MSV into a backbone MP

for extracting features of point clouds and a task-specific
head MH . The goal of this work is to construct an im-
age memory-based adapter for MI(It) and a point cloud
memory-based adapter for MP (P

′
t ) to store and reuse the
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Figure 3. The architecture of the memory-based adapter for point
cloud features. We cache and aggregate the features in a queue of
3D voxel grids. Gray, green, yellow and red block refer to previ-
ous, current, updated and aggregated voxel features.

extracted backbone features for temporal modeling:

MI(It),m
I
t = AI(MI(It),m

I
t−1,m

P
t−1),

MP (P
′
t ),m

P
t = AP (MP (P

′
t ),m

P
t−1) (3)

where the memory-based adapter A updates the memory mt

with current features and refines current features by reusing
the memory. We fully exploit inter-modal and intra-modal
relationships: MSV fuses image features to point clouds,
AP reuses previous point cloud features to refine current
point cloud features, and AI reuses previous features from
both modal to refine the current image features. As shown
in Figure 2, we follow the same paradigm to design both
modules, which can be easily embedded into image and
point cloud backbones to achieve temporal modeling.

3.2. Temporal Modeling for Point Clouds

Given {MP (P
′
1),MP (P

′
2), ...,MP (P

′
t )} at time t, i.e.,

the sequence of point cloud features extracted from the
backbone, we aim to enhance the current features MP (P

′
t )

by exploiting the temporal relations within this sequence.
Here we first construct a memory to efficiently cache the
point cloud features from different timestamp. Then we ag-
gregate the temporal information from the memory to fea-
tures at current time t with a plug-and-play adapter.

Memory construction: The temporal information for
3D scenes is reflected in a more complete geometry. As a
single RGB-D frame may not contain a complete large ob-
jects or high-level scene context, the geometric information
from previous frames are important for accurate perception
of current frame. Therefore, we can cache the sequence of
extracted point cloud features in a shared 3D space. A sim-
ple way is to directly store the features in terms of point
clouds in the world coordinate system. However, this is in-
efficient in both storage and computation: (1) as the coor-
dinates of the point cloud are real values, the storage over-
head will keep growing even if the RGB-D camera is not

moving; (2) the number of points will be very large over
time, so point-based sampling and feature aggregate take
up high computation overhead. To this end, we propose to
store the features in a quantitized coordinate system, where
point clouds are voxelized and stored in 3D grids. We also
maintain the voxels in a queue to reduce the memory foot-
print when the scene is too large. Specifically, MP (P

′
t )

is first voxelized into the voxel grids Vt by averaging all
features whose coordinates falls into the same grid. These
voxels are tagged with timestamp t. Then we merge Vt to
the memory mP

t−1 by maxpooling:

mP
t = maxpooling(Vt,m

P
t−1),

mP
t = deq(mP

t , l) if N(mP
t ) > Nmax (4)

where maxpooling refers to channel-wise maxpooling con-
ducted on each voxel grid, which will update both fea-
tures and timestamps. deq(·, l) means removing voxels with
timestamp earlier than t− l+ 1 from the memory. N(mP

t )
is the number of voxels in the memory. We utilize max-
pooling as it preserves the most discriminative features over
time, which is also efficient to compute as only features at
time t− 1 and t are required.

Memory-based adapter: After caching and updating
the point cloud features in voxels, we need to make use of
mP

t to enhance MP (P
′
t ) with temporal information. To ex-

ploit rich scene context from the memory mP
t while reduce

redundant computation, we first use the coordinates of Vt to
query a neighbor voxel set:

N (Vt) = {mP
t [x][y][z]|(x, y, z) ∈ s ∗ B(Vt)} (5)

where N (Vt) is the queired neighborhood of Vt.
mP

t [x][y][z] refers to the voxel in mP
t at coordinate

(x, y, z). B is the minimum enclosing axis-aligned bound-
ing box of Vt and s is a scaling factor to enlarge the size
of box. In this way, the temporal information which pro-
vides supporting geometric information for current frame is
collected into this voxel set.

We then convert N (Vt) to a sparse tensor [6, 11], which
is followed by a 3D sparse convolutional module AP to ag-
gregate the context information within N (Vt) to locations
of Vt. Finally we update MP (P

′
t ) in an adapter-manner:

(1) We map the aggregated features back to the coordinates
of MP (P

′
t ) and then add it to the original features with

residual connection; (2) The adapter module AP is zero-
initialized. Therefore after inserting the adapter, finetuning
will smoothly start from the original point.

3.3. Temporal Modeling for Images

For the sequence of image features {MI(I1), ...,MI(It)}
at time t, we follow the same paradigm as the point cloud
counterpart to store it with a memory and aggregate tempo-
ral information to current frame MI(It) with an adapter.
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Figure 4. The architecture of the memory-based adapter for image
features. We reorganize the input features and shift out a propor-
tion of channels into the memory, while shifting in previous mem-
ory and aggregating temporal information by 2D convolution. We
also resort to the 3D memory for more global context.

Memory construction: Different from 3D data where
point clouds from different timestamps can be stored in a
shared 3D space, for 2D data the image features are stacked
into a streaming video. A common practice to process this
kind of data [19] is to maintain a queue and perform causal
convolution (unidirectional along temporal dimension) to
aggregate the information from previous frames to current
image features. However, video analysis methods focus on
extracting the global information of the streaming video up
to now, while in our case we only need to enhance the cur-
rent image features MI(It). So causal convolution on pre-
vious frames will bring a large amount of redundant compu-
tation. Moreover, in online 3D scene perception, the most
important information for image features is the observation
of objects from multiple perspectives. Since an object is
usually observed in a few adjacent frames, maintaining a
short queue is enough in most cases. To this end, we make
an extreme simplification: we only store one frame of previ-
ous image and exploit temporal relations between frames at
time t−1 and t. In order to efficiently aggregate the adjacent
frames, we adopt channel shift to cache the temporal infor-
mation. Formally, given MI(It) ∈ RH×W×C , we learn a
linear transformation R1 ∈ RC×C′

to map the image fea-
tures into another embedding space, where the first 1

τ chan-
nels contain rich temporal information relevant to the next
frame. Therefore the memory can be simply constructed by
shifting out this part of channels:

mI
t = (MI(It) ·R1)[:,:,:C′

τ ] (6)

Note that this operation is repeated frame-by-frame, thus
mI

t−1 contains the temporal information relevant with cur-
rent features MI(It).

Memory-based adapter: At time t, after shifting out
a proportion of channels to memory, we can pad the empty

channels with previous memory mI
t−1. In this way, the tem-

poral information of the adjacent two frames are merged
into a single frame, for which we can directly adopt 2D con-
volution to aggregate the features:

Ft = 2D-Conv(mI
t−1 ⊕ (MI(It) ·R1)[:,:,C′

τ :]) ·R2 (7)

where R2 ∈ RC′×C is a learnable inverse transformation to
map image features back to the original embedding space.
Finally we update MI(It) by adding Ft with a residual con-
nection. We also zero-initialize R1, R2 and 2D-Conv for
smooth finetuning.

3.4. Inter-modal Temporal Modeling

Although maintaining a short queue and adopting channel
shift are able to effectively aggregate temporal information
for image features, the global context is limited. This will
lead to a performance drop when an object is very large or
the RGB-D camera stops moving. However, as analyzed be-
fore, extracting rich global context from a streaming video
is really memory and computation consuming. To solve this
problem, we resort to the point cloud memory for global
context extraction, because the point cloud features are ef-
ficiently cached in a shared 3D space and thus the length of
queue can be long. We devise a 3D-to-2D adapter to refine
current image features with the global 3D features. Here we
first project mP

t−1 to the discrete image coordinate system
with the inverse function of S , which are then converted to
sparse tensor. In this way, we keep the sparsity of point
cloud memory and make the 2D features geometry-aware.
2D sparse convolution is then applied on the sparse tensor
to aggregate the context information, followed by a densify
operation to keep features inside image and pad other pix-
els with zero. Finally we add the densified 2D features to
enhance MI(It) · R1 with richer global context. We zero-
initialize the 2D sparse convolution for smooth training.

To acquire the final online perception results, a predic-
tion fusion strategy is needed. As the focus of our work
is the temporal learning modules for image and point cloud
backbones, we only adopt a simple post-processing strategy
to fuse the predictions of each frame in a whole, which we
detail in Section 4.1.

4. Experiment
In this section, we first describe our datasets and implemen-
tation details. Then we compare our method with state-of-
the-art methods on both room-level and online benchmarks
to comprehensively analyze the advantage of memory-
based adapters. Finally we conduct ablation studies to vali-
date the effectiveness of our design.

4.1. Benchmarks and Implementation Details

We evaluate our method on two datasets: ScanNet [7] and
SceneNN [15]. ScanNet contains 1513 scanned scene se-

5



quences, out of which we use 1201 sequences for training
and the rest 312 for testing. SceneNN is a smaller dataset
which contains 50 high-quality scanned scene sequences
with semantic label. After careful filtering, we select 12
clean sequences for testing. We train all models on Scan-
Net and evaluate them on ScanNet or SceneNN.

Benchmarks: We first compare different methods on
room-level benchmarks, i.e., the performance on the re-
constructed complete scenes. For semantic segmentation,
we compare different methods on ScanNet and SceneNN.
Since online methods may not perform 3D reconstruction,
we map their predictions on point clouds concatenated from
posed RGB-D images to the reconstructed point clouds with
nearest neighbor interpolation. For object detection and in-
stance segmentation, the metric is computed on each object
rather than the whole point clouds. Therefore we use re-
constructed point clouds and RGB-D videos as the inputs
for offline and online methods respectively, and calculate
metrics based on their respective inputs.

We also follow AnyView [44] to organize an online
benchmark on ScanNet for more comprehensive evaluation.
We divide the RGB-D video of each room into several non-
overlapping sequences and regard each sequence as an in-
dependent scene, where the number or the length of each
sequence can be set to different values. In this way, we
can measure the generalization ability of different methods
when the input scenes are incomplete and of variable scales,
which is a more practical setting. In our experiments, we
divide each room into 1/5/10 sequences or sequences with
fixed length 5/10/15, resulting in 6 metrics.

Implementation details: To train MSV , we first train
a 2D perception model MI following Pri3D [14]. We
use UNet [37] for semantic segmentation and Faster-
RCNN [36] (only ResNet [12] and FPN [21] backbones
are needed) for object detection and instance segmenta-
tion. Then we fix the image backbone and train MSV on
ScanNet-25k [7], which is a single-view RGB-D dataset.
For online perception, we zero-initialize the memory-based
adapters and insert them into MSV . Then we train the new
model on RGB-D videos from ScanNet. To reduce memory
footprint, we randomly sample 8 adjacent RGB-D frames
for each scene at every iteration. We insert our memory-
based adapters between the backbone and neck. For back-
bones which output multi-level features, we insert different
adapters to different levels. In terms of hyperparameters,
we set l = 50, s = 2.5, τ = 8 and δ = 0.03. We simply use
the same optimizer configurations to train the models as in
their original paper (designed for offline training).

For prediction fusion, we adopt different strategies for
different tasks. Semantic segmentation: The predictions
for each frame are concatenated, which has the same point
number with St. We use 2cm voxelization to unify the pre-
dictions for points inside the same voxel grid by channel-

Table 1. 3D semantic segmentation results on ScanNet and Sce-
neNN datasets. For online methods, we map the predictions on
point clouds concatenated from posed RGB-D images to the re-
constructed point clouds to compare with offline method.

Method Type ScanNet SceneNN
mIoU mAcc mIoU mAcc

MkNet [6] Offline 71.6 80.4 – –

Fs-A [46] Online 63.5 73.7 51.1 62.4
MkNet-SV Online 68.8 77.7 48.4 61.2
MkNet-SV+Ours Online 72.7 84.1 56.7 70.1

Table 2. 3D object detection and instance segmentation results on
ScanNet dataset. Offline and online methods are separated by hor-
izontal line. † means INS-Conv requires an additional 3D recon-
struction algorithm to acquire high-quality point clouds or meshes.

Detection Insseg

Method
mAP

Method
mAP

@25 @50 @25 @50

FCAF3D [38] 70.7 56.0 SoftGroup [42] 78.9 67.6
CAGroup3D [43] 74.5 60.3 TD3D [18] 81.3 71.1

AnyView [44] 60.4 36.0 INS-Conv† [22] – 57.4
FCAF3D-SV 41.9 20.6 TD3D-SV 53.7 36.8

FCAF3D-SV+Ours 70.5 49.9 TD3D-SV+Ours 71.3 60.5

wise maxpooling. Object detection: The predicted bound-
ing boxes for each frame are merged by 3D NMS. When
two boxes of different time are colliding during NMS, we
add δ to the classification scores of box in the newer frame.
This is because our method ensures the backbone extracts
more complete geometric features for the newer frame. In-
stance segmentation: Instance segmentation can be divided
into transformer-based [40], grouping-based [17, 42] and
detection-based [13, 18, 45]. As the first two kinds require
a specially designed mask fusion strategy [22] for online
perception, we opt for the detection-based manner, where
we can first conduct online 3D object detection and then ut-
lize the boxes to crop and segment the point cloud features
stored in the memory.

4.2. Comparison with State-of-the-art

We compare our method with the top-performance offline
and online 3D perception models. Offline models refer to
MRec described in Section 3.1, which is trained on recon-
structed point clouds. Models with suffix ”-SV” refer to
MSV that is trained on single-view RGB-D images.

Room-level benchmarks: By default, offline methods
take in reconstructed point clouds and online methods take
in posed RGB-D videos without 3D reconstruction. Spe-
cial case is denoted by †. Note that there is a challenge in
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Table 3. The performance of different 3D scene perception methods on ScanNet online benchmark. We report mIoU / mAcc, mAP@25 /
mAP@50 and mAP@25 / mAP@50 for semantic segmentation, object detection and instance segmentation respectively.

Method Type
Number of Sequence Length of Sequence

1 5 10 5 10 15

Se
m

se
g MkNet Offline 63.7 / 73.5 62.7 / 72.8 58.9 / 69.4 59.3 / 69.8 63.0 / 73.0 63.5 / 73.7

Fs-A Online 62.0 / 72.8 60.6 / 71.7 60.0 / 71.3 60.1 / 71.3 60.7 / 71.8 61.0 / 72.0
MkNet-SV Online 63.3 / 74.3 63.3 / 74.3 63.3 / 74.3 63.3 / 74.3 63.3 / 74.3 63.3 / 74.3
MkNet-SV+Ours Online 69.1 / 82.2 66.8 / 80.0 65.9 / 79.2 65.9 / 79.3 66.8 / 80.1 67.1 / 80.4

D
et

ec
tio

n FCAF3D Offline 57.0 / 40.6 41.1 / 25.2 34.6 / 19.3 28.4 / 15.2 33.9 / 19.4 37.7 / 22.8
AnyView Online 60.4 / 36.0 48.8 / 25.3 43.1 / 20.5 36.6 / 16.5 42.0 / 20.7 45.6 / 23.8
FCAF3D-SV Online 41.9 / 20.6 29.8 / 13.3 27.0 / 11.5 24.4 / 10.1 26.2 / 11.0 27.6 / 12.1
FCAF3D-SV+Ours Online 70.5 / 49.9 58.7 / 37.7 56.2 / 34.3 53.1 / 31.2 54.9 / 33.8 56.1 / 35.6

In
ss

eg

TD3D Offline 64.0 / 50.8 61.6 / 49.7 59.4 / 48.4 59.0 / 47.9 61.4 / 49.8 61.7 / 49.8
TD3D-SV Online 53.7 / 36.8 54.2 / 41.6 57.0 / 46.3 56.4 / 45.5 53.9 / 40.9 52.6 / 39.5
TD3D-SV+Ours Online 71.3 / 60.5 64.7 / 55.2 64.2 / 55.0 64.0 / 54.7 64.6 / 55.1 63.9 / 54.3

online methods when compare to offline alternatives, as of-
fline methods directly process the complete and clean 3D
geometry of rooms while online methods deal with partial
and noisy frames. According to Table 1 and Table 2, by
simply inserting the memory-based adapters into MSV , we
significantly boost their accuracy on complete scenes and
achieve better performance compared with state-of-the-art
online 3D scene perception models specially designed for
each task. We observe the improvement upon MSV is es-
pecially significant on 3D object detection and instance seg-
mentation tasks. This is because these tasks require com-
plete predictions for each object, while it is usually very
hard to infer the whole geometry of large objects with a sin-
gle RGB-D frame. We also notice our method even outper-
forms offline methods on semantic segmentation task. Since
this task requires more detailed perception of local geome-
try rather than the global context, our method can predict
finer segmentation with only partial and noisy inputs.

Online benchmark: In this benchmark, the inputs to all
methods are the posed RGB-D sequences. We concatenate
the point clouds from each RGB-D frame of a sequence into
a whole for offline methods. As the code of INS-Conv is not
accessible, we do not compare with it on this benchmark.
According to Table 3, offline methods show bad generaliza-
tion ability on partial and noisy scenes, especially when the
input sequence is short. Note that offline methods take in
the whole observed scene St at each time. When processing
St+1, the features extracted for St is wasted. On the con-
trary, online methods process a single frame xt at each time
and fuse the per-frame predictions, which is much more ef-
ficient and practical in real-time robotic tasks. Equipped
with our memory-based adapters, MSV achieves the best
performance compared with other offline and online meth-
ods on all tasks and experimental settings. We observe the
longer the input sequence, the larger the improvement upon

Table 4. Ablation study on point cloud and image modules. We re-
port semantic segmentation results on ScanNet. The performance
of image module is based on point cloud module.

Method mIoU mAcc

Remove residual connection 64.6 77.9
Random initialization 66.2 78.6
Remove voxel maxpooling 64.8 76.1
Set scaling factor s = 1 65.3 78.4
Set scaling factor s = 5 66.8 79.3
Insert after neck 66.0 78.8
The final point cloud module 66.9 79.3

Remove residual connection 67.1 79.8
Random initialization 68.7 81.7
Set shift ratio τ = 4 68.9 82.1
Set shift ratio τ = 16 68.7 81.9
Remove 3D to 2D adapter 68.0 80.8
Insert after neck 68.4 81.6
The final image module 69.1 82.2

Table 5. Effects of our memory-based adapters when both image
and point cloud backbones are fixed during finetuning.

MkNet FCAF3D TD3D

Fix I 69.1 / 82.2 70.5 / 49.9 71.3 / 60.5
Fix P & I 67.3 / 79.9 66.4 / 47.1 69.1 / 58.2

MSV , which validates our modules can effectively aggre-
gate long-term temporal information.

We visualize the predictions of different methods in Fig-
ure 5. It can be seen that our method is more accurate than
MSV due to the temporal modeling ability, and more robust
to number of frames than offline methods.

4.3. Ablation Study

We first ablate the design choices of two memory-based
adapters on 3D semantic segmentation task on ScanNet.
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Figure 5. Visualization results on the online benchmark. Our predictions are accurate and robust to the number of frames. Note that some
ground-truth masks are incomplete due to the noisy 2D annotations, in this case our predictions are more reasonable than the ground-truths.

Besides, we further show the performance of our method
when both image and point cloud backbones are fixed dur-
ing finetuning the adapters.

Point cloud and image modules: Table 4 validates the
effectiveness of our designs. We observe removing voxel
maxpooling significantly degrades the performance, which
shows the importance of updating memory. With the in-
crease of s, the performance first improves and then keeps
steady or even slightly declines, which indicates the neigh-
bor context information is important for temporal learn-
ing, but too large neighbor voxel set brings much redun-
dant features. Large s will also increase the computa-
tion overhead, so we choose s = 2.5 to achieve the best
accuracy-computation tradeoff. We observe the influence
of τ is similar with s and thus choosing a proper value is
important for both high accuracy and less memory storage.
From these experiments, we also validate the effectiveness
of the ’adapter paradigm’, which includes residual connec-
tion, zero-initialization and inserting after backbone.

Fixed backbones: When finetuning our adapters, we
fix the image backbone and finetune other parameters. We
further study the effects of our method when both image
and point cloud backbones are fixed. As shown in Table
5, even with both image and point cloud backbones fixed,
our method still achieves state-of-the-art performance on
all three online tasks. In this way, we can further reduce
the memory footprint and training time, which provides the
users with more efficiency-accuracy tradeoff.

5. Conclusion
In this paper, we have presented memory-based adapters for
online 3D scene perception. Mainstream 3D scene percep-
tion methods are offline, which is hard to be applied in most
real-time applications where only streaming RGB-D video
is accessible. Existing online perception methods design
model and task-specific temporal learning approaches, but
most of them only focus on temporal aggregation for single
modality and thus cannot fully exploit temporal relations
between image and point cloud features. To this end, we
propose plug-and-play temporal learning modules, which
can empower offline methods with online perception ability
by simply inserting memory-based adapters and finetuning
on RGB-D videos. Specifically, given point cloud and im-
age features extracted from the backbones, we first devise
a queued memory mechanism to cache these information
over time and maintaining a reasonable storage overhead.
Then we devise aggregation modules which directly oper-
ate on the memory and pass temporal information from the
cached features to current frame. As the global context of
image features is limited due to the short queue, we further
propose 3D-to-2D adapter to enhance image features with
3D memory. We conduct extensive experiments on ScanNet
and SceneNN. By equipping offline models with our mod-
ules, we achieve leading performance on three scene per-
ception tasks compared with state-of-the-art online meth-
ods, even without any model and task-specific designs.
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Supplementary Material
This supplementary material is organized as follows:
• Section A demonstrates the detailed architecture of our

baseline models in three tasks and how to insert our
adapters into them.

• Section B details the training hyperparameters adopted in
our experiments.

• Section C details per-class experimental results.

A. Detailed Architecture
We illustrate the architectures of both image and point
cloud backbones and show how to insert the memory-based
adapters into them in Figure 6. For online 3D semantic seg-
mentation, we use U-Net [37] as the image backbone and
Minkowski-UNet [6] as the point cloud backbone, which is
shown in Figure 6 (D) and (C) respectively. For online 3D
object detection, we adopt ResNet [12] with FPN [21] as
the image backbone and FCAF3D [38] as the point cloud
backbone, which is shown in Figure 6 (E) and (B) respec-
tively. For online 3D instance segmentation, we use the
same image backbone as the object detection task and adopt
TD3D [18] as the point cloud backbone, which is shown
in Figure 6 (E) and (A) respectively. Note that for TD3D,
the backbone maintains a high-resolution scene representa-
tion for ROI-wise instance prediction. We consrtuct a point
cloud memory to cache this scene representation, which en-
sures the point clouds within each ROI are the most com-
plete up to current time. This design helps us acquire com-
plete instance mask by simply performing 3D NMS, which
avoids complicated mask fusion strategy [22] to merge in-
stance masks of different frames.

B. Training Hyperparameters
We train the online perception models in two stage. Firstly
we train single-view perception model MSV on ScanNet-
25k [7]. Secondly we insert the memory-based adapters into
MSV and finetune the network on ScanNet RGB-D videos.

For online semantic segmentation, we set max epoch as
250, weight decay as 0.01, initial learning rate as 0.0008 and
adopt AdamW optimizer with OneCycleLR scheduler for
the first stage. Then we set max epoch as 36, weight decay
as 0.01, initial learning rate as 0.008 and adopt AdamW
optimizer with a stepwise scheduler which steps at 24 and
32 epoch for the second stage.

For online object detection, we set max epoch as 12,
weight decay as 0.0001, initial learning rate as 0.001 and
adopt AdamW optimizer with a stepwise scheduler which
steps at 8 and 11 epoch for the first stage. Then we adopt the
same hyperparameters for finetuning in the second stage.

For online instance segmentation, we set max epoch as
33, weight decay as 0.0001, initial learning rate as 0.001 and
adopt AdamW optimizer with a stepwise scheduler which

Input

DownConv

Memory Adapter

Conv UpConv

Det head

ROI extracter

Prediction Feature

Interpolate

Seg head

C

C

C

C ConcatenateAdd

(A)

(B)

(C)

(D)

(E)

TD3D

FCAF3D

MinkUnet

Unet

ResNet+FPN

Figure 6. Details about the architectures of image and point cloud
backbones and how to insert the adapters into them.

steps at 28 and 32 epoch for the first stage. Then we adopt
the same hyperparameters for finetuning.

C. Class-specific Results
We provide class-specific experimental results of out
method on three 3D scene perception tasks. Table 6 and 7
show the 3D semantic segmentation results on ScanNet and
SceneNN dataset with per-class IoU. Table 8 and 9 show
the 3D object detection results on ScanNet dataset with per-
class AP25 and AP50. Table 10 and 11 show the 3D object
detection results on ScanNet dataset with per-class AP25

and AP50.
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Table 8. Per-class 3D object detection results (AP25) of our method on the ScanNet validation set.

cabinet bed chair sofa table door window bookshelf picture counter desk curtain fridge curtain toilet sink bathtub others mean

Ours 55.2 85.4 88.7 87.2 63.3 62.5 47.3 66.2 36.0 65.2 80.1 65.0 58.1 76.3 99.7 76.7 93.3 62.0 70.5

Table 9. Per-class 3D object detection results (AP50) of our method on the ScanNet validation set.

cabinet bed chair sofa table door window bookshelf picture counter desk curtain fridge curtain toilet sink bathtub others mean

Ours 36.7 75.6 73.9 77.9 57.0 33.8 19.8 43.7 19.4 26.3 62.8 32.4 41.1 24.6 89.2 46.7 84.8 52.2 49.9

Table 10. Per-class 3D instance segmentation results (AP25) of our method on the ScanNet validation set.

cabinet bed chair sofa table door window bookshelf picture counter desk curtain fridge curtain toilet sink bathtub others mean

Ours 60.3 86.8 91.5 80.3 72.8 56.0 55.3 67.5 45.1 48.9 72.9 68.4 56.5 86.3 99.7 81.3 87.8 65.3 71.3

Table 11. Per-class 3D instance segmentation results (AP50) of our method on the ScanNet validation set.

cabinet bed chair sofa table door window bookshelf picture counter desk curtain fridge curtain toilet sink bathtub others mean

Ours 50.9 79.1 82.5 71.3 63.6 44.0 36.0 45.5 38.5 30.3 57.3 49.8 52.9 78.9 99.7 66.6 84.9 56.9 60.5
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